187 research outputs found

    Universal description of three two-component fermions

    Full text link
    A quantum mechanical three-body problem for two identical fermions of mass mm and a distinct particle of mass m1m_1 in the universal limit of zero-range two-body interaction is studied. For the unambiguous formulation of the problem in the interval μr<m/m1μc\mu_r < m/m_1 \le \mu_c (μr8.619\mu_r \approx 8.619 and μc13.607\mu_c \approx 13.607) an additional parameter bb determining the wave function near the triple-collision point is introduced; thus, a one-parameter family of self-adjoint Hamiltonians is defined. The dependence of the bound-state energies on m/m1m/m_1 and bb in the sector of angular momentum and parity LP=1L^P = 1^- is calculated and analysed with the aid of a simple model

    On a class of second-order PDEs admitting partner symmetries

    Full text link
    Recently we have demonstrated how to use partner symmetries for obtaining noninvariant solutions of heavenly equations of Plebanski that govern heavenly gravitational metrics. In this paper, we present a class of scalar second-order PDEs with four variables, that possess partner symmetries and contain only second derivatives of the unknown. We present a general form of such a PDE together with recursion relations between partner symmetries. This general PDE is transformed to several simplest canonical forms containing the two heavenly equations of Plebanski among them and two other nonlinear equations which we call mixed heavenly equation and asymmetric heavenly equation. On an example of the mixed heavenly equation, we show how to use partner symmetries for obtaining noninvariant solutions of PDEs by a lift from invariant solutions. Finally, we present Ricci-flat self-dual metrics governed by solutions of the mixed heavenly equation and its Legendre transform.Comment: LaTeX2e, 26 pages. The contents change: Exact noninvariant solutions of the Legendre transformed mixed heavenly equation and Ricci-flat metrics governed by solutions of this equation are added. Eq. (6.10) on p. 14 is correcte

    Partner symmetries of the complex Monge-Ampere equation yield hyper-Kahler metrics without continuous symmetries

    Full text link
    We extend the Mason-Newman Lax pair for the elliptic complex Monge-Amp\`ere equation so that this equation itself emerges as an algebraic consequence. We regard the function in the extended Lax equations as a complex potential. We identify the real and imaginary parts of the potential, which we call partner symmetries, with the translational and dilatational symmetry characteristics respectively. Then we choose the dilatational symmetry characteristic as the new unknown replacing the K\"ahler potential which directly leads to a Legendre transformation and to a set of linear equations satisfied by a single real potential. This enables us to construct non-invariant solutions of the Legendre transform of the complex Monge-Amp\`ere equation and obtain hyper-K\"ahler metrics with anti-self-dual Riemann curvature 2-form that admit no Killing vectors.Comment: submitted to J. Phys.

    Effective three-body interactions in the alpha-cluster model for the ^{12}C nucleus

    Full text link
    Properties of the lowest 0+0^{+} states of 12C^{12}\mathrm{C} are calculated to study the role of three-body interactions in the α\alpha-cluster model. An additional short-range part of the local three-body potential is introduced to incorporate the effects beyond the α\alpha-cluster model. There is enough freedom in this potential to reproduce the experimental values of the ground-state and excited-state energies and the ground-state root-mean-square radius. The calculations reveal two principal choices of the two-body and three-body potentials. Firstly, one can adjust the potentials to obtain the width of the excited 02+0_2^+ state and the monopole 02+01+0_2^+ \to 0_1^+ transition matrix element in good agreement with the experimental data. In this case, the three-body potential has strong short-range attraction supporting a narrow resonance above the 02+0_2^+ state, the excited-state wave function contains a significant short-range component, and the excited-state root-mean-square radius is comparable to that of the ground state. Next, rejecting the solutions with an additional narrow resonance, one finds that the excited-state width and the monopole transition matrix element are insensitive to the choice of the potentials and both values exceed the experimental ones

    Low-energy three-body dynamics in binary quantum gases

    Full text link
    The universal three-body dynamics in ultra-cold binary Fermi and Fermi-Bose mixtures is studied. Two identical fermions of the mass mm and a particle of the mass m1m_1 with the zero-range two-body interaction in the states of the total angular momentum L=1 are considered. Using the boundary condition model for the s-wave interaction of different particles, both eigenvalue and scattering problems are treated by solving hyper-radial equations, whose terms are derived analytically. The dependencies of the three-body binding energies on the mass ratio m/m1m/m_1 for the positive two-body scattering length are calculated; it is shown that the ground and excited states arise at m/m1λ18.17260m/m_1 \ge \lambda_1 \approx 8.17260 and m/m1λ212.91743m/m_1 \ge \lambda_2 \approx 12.91743, respectively. For m/m_1 \alt \lambda_1 and m/m_1 \alt \lambda_2, the relevant bound states turn to narrow resonances, whose positions and widths are calculated. The 2 + 1 elastic scattering and the three-body recombination near the three-body threshold are studied and it is shown that a two-hump structure in the mass-ratio dependencies of the cross sections is connected with arising of the bound states.Comment: 16 page

    Anti-self-dual Riemannian metrics without Killing vectors, can they be realized on K3?

    Full text link
    Explicit Riemannian metrics with Euclidean signature and anti-self dual curvature that do not admit any Killing vectors are presented. The metric and the Riemann curvature scalars are homogenous functions of degree zero in a single real potential and its derivatives. The solution for the potential is a sum of exponential functions which suggests that for the choice of a suitable domain of coordinates and parameters it can be the metric on a compact manifold. Then, by the theorem of Hitchin, it could be a class of metrics on K3K3, or on surfaces whose universal covering is K3K3.Comment: Misprints in eqs.(9-11) corrected. Submitted to Classical and Quantum Gravit

    Universal low-energy properties of three two-dimensional particles

    Get PDF
    Universal low-energy properties are studied for three identical bosons confined in two dimensions. The short-range pair-wise interaction in the low-energy limit is described by means of the boundary condition model. The wave function is expanded in a set of eigenfunctions on the hypersphere and the system of hyper-radial equations is used to obtain analytical and numerical results. Within the framework of this method, exact analytical expressions are derived for the eigenpotentials and the coupling terms of hyper-radial equations. The derivation of the coupling terms is generally applicable to a variety of three-body problems provided the interaction is described by the boundary condition model. The asymptotic form of the total wave function at a small and a large hyper-radius ρ\rho is studied and the universal logarithmic dependence ln3ρ\sim \ln^3 \rho in the vicinity of the triple-collision point is derived. Precise three-body binding energies and the 2+12 + 1 scattering length are calculated.Comment: 30 pages with 13 figure
    corecore