10 research outputs found

    Exploring potato seed research: a bibliometric approach towards sustainable food security

    Get PDF
    IntroductionPotato is considered to be complete food that will not only ensure food security but also alleviate poverty. Seed production of potato requires specific temperatures and conditions. In response to the growing emphasis on sustainable production, there has been an increasing focus on research on tuber seed production.MethodsIn our study, we have employed bibliometric analysis to investigate the trends in potato seed research and assess its correlation with sustainable development. Tabular analysis and network analysis are employed in the study to understand the prominent authors and institutions and research trends across time. For this purpose, Biblioshiny and Vosviewer software were used. The steps of bibliometric analysis were used, which included data retrieval from Dimensions software. Owing to its limitations, a major analysis was conducted without affecting the results.Result and discussionIt was found from the analysis that it was SDG 2 that was mostly linked with the theme of potato seed production. The results depicted an increasing trend of publications and citations. Co-authorship analysis of authors showed high linkage among groups of authors that formed clusters while other authors remained disconnected. Among countries United States, China and the United Kingdom had a higher impact on publications and citations. Our analysis showed that there is still scope for collaboration among countries as there is no evidence of multidisciplinary interlinkages. By understanding the current research landscape, identifying influential works and authors, and uncovering collaboration patterns, we can pave the way for future advancements in potato seed production. Ultimately, this research contributes to achieving sustainable agriculture and ensuring food security for future generations

    Mechanistic Understanding of Leakage and Consequences and Recent Technological Advances in Improving Nitrogen Use Efficiency in Cereals

    No full text
    Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications

    Effects of Sodic Water Irrigation and Neutralizing Amendments on Physiological, Biochemical, and Nutritional Quality Traits of Fodder Sorghum

    No full text
    This study was conducted at two farmers’ fields to assess the production potential and quality of summer fodder sorghum intervened between the rice-wheat cropping sequences (RWCS) on high residual alkalinity, i.e., residual sodium carbonate (RSC) water irrigation-induced sodic soil. The treatments were comprised of two field sites having different residual alkalinity [RSC ~5 me L−1 (RSC-1) and ~7 me L−1 (RSC-2) water irrigation in main plots, four neutralization strategies, i.e., control/unamended condition (N0), gypsum @ 7.5 t ha−1 (N1), pressmud @ 10 t ha−1 (N2) and gypsum @ 3.75 t ha−1 + pressmud @ 5 t ha−1 (N3) in sub plots and two varietal sequences of RWCS, i.e., salt tolerant varieties (CSR 30 basmati fb KRL 210) and traditionally grown varieties (PB 1121 fb HD 2967) of rice and wheat as sub–sub plots. Sorghum cv. Sugargraze (Advanta Company) was grown after the harvesting of wheat and cut for green fodder before transplanting rice during both years. Sorghum physiological and biochemical traits [relative water content (RWC), total chlorophyll content, photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (E), chlorophyll fluorescence (Fv/Fm), photon quantum yield [Y (II)] and K/Na ratio]; fodder quality traits [Crude protein (CP), and ether extract (EE)] and productivity [green fodder yield (GFY), dry matter yield, CP yield, EE yield and ash yield) and profitability (gross returns, net returns, benefit–cost ratio) significantly decreased with the increase in irrigation water RSC from 5 to 7 me L−1. Proline, total soluble sugar (TSS), total soluble protein (TSP), dry matter (DM), ash, neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), neutral detergent insoluble CP (NDICP) and acid detergent insoluble CP (ADICP) decreased with increasing RSC of irrigation water. Sodicity neutralization considerably improved sorghum physiological adaptation mechanisms, fodder quality, productivity and profitability. The introduction of summer fodder sorghum between RWCS resulted in additional net returns (NR) (INR 13.64 to 20.79 × 103 ha−1). Our results indicate that pressmud proved a feasible alternative to replace and/or reduce the quantity of gypsum required for neutralization of RSC water irrigation. Growing summer fodder sorghum between RWCS along with neutralization of RSC water irrigation can increase the availability of quality green fodder during lean period and also increase the profitability of the rice-wheat cropping system in high residual alkalinity water irrigation conditions

    A Bibliometric Analysis of Groundwater Access and Its Management: Making the Invisible Visible

    No full text
    The sustainable management of groundwater resources is required to avoid a water crisis. The current study focused on a bibliometric analysis of groundwater access and management to assess research progress. The study was based on data from Dimensions.ai generated using the search terms “Groundwater”, “access”, and “management” for the period from 1985 to 2022. A total of 534 documents were identified as relevant and retrieved in CSV format. The intellectual structure of the retrieved data was visualized and analyzed using VoS viewer software (version 1.6.18). The analysis showed that the field of earth sciences had the highest number of publications on groundwater access and management (358), followed by the environmental sciences (155). Most of the articles (267) were about Sustainable Development Goal 6, which focuses on ensuring access to clean water and sanitation. The co-authorship analysis for the countries indicated that the United States has the most impact and research, and all other countries have established clusters around it. The citation analysis of the organizations showed that the International Water Management Institute, Charles Sturt University, and Wageningen University and Research were the top three organizations in terms of total citations (825, 611, and 584, respectively), indicating the most effect. The citation analysis for the sources indicated that the “Water” journal had a greater impact on readers with respect to groundwater research. Numerous parties are involved in the groundwater investigation; hence, a broad multidisciplinary approach is required. Therefore, researchers should work together rather than alone to address the problem of sustainable groundwater management

    Energy Budgeting and Carbon Footprints Estimation of Fodder Maize Varieties Sown under Different Nutrient Management Practices in Indo-Gangetic Plains of India

    No full text
    Inappropriate agricultural practices consume more input energy and emit higher greenhouse gases (GHGs) which cause global warming and climate change, thereby threatening environmental sustainability. To identify energy and carbon-efficient varieties and nutrient management practices, the present study was undertaken during the kharif season of 2018 and 2019 in a split-plot design with three varieties of fodder maize (African Tall, J-1006 and P-3396) and four nutrient management practices such as N0: Absolute control, N1: 100% recommended dose of fertilizers (RDF), N2: 75% RDF + plant growth promoting rhizobacteria (PGPR) + Panchagavya spray and N3: 50% RDF + 25% farmyard manure (FYM) + PGPR + Panchagavya spray). Results indicated that variety J-1006 and applying 75% RDF + PGPR + Panchagavya spray produced significantly higher dry fodder yield. Among the varieties, J-1006 recorded the highest total energy output (224,123 MJ ha−1), net energy (211,280 MJ ha−1), energy use efficiency (17.64), energy productivity (0.98 kg MJ−1), energy profitability (16.64), and lowest specific energy (1.03 MJ ha−1). Regarding nutrient management, 75% RDF + PGPR + Panchagavya spray fetched the highest total energy output (229,470 MJ ha−1) and net energy (215,482 MJ ha−1). However, energy use efficiency, energy productivity, and energy profitability were significantly higher with integrated nutrient management (N2 and N3) over 100% RDF. Concerning the carbon estimation, J-1006 resulted in a significantly higher carbon output (5479 kg CE ha−1), net carbon gain (5029 kg CE ha−1), carbon efficiency (12.46), carbon sustainability index (11.46), and significantly lower carbon footprint per unit yield (CFy) (131.3 kg CO2-e Mg−1). For nutrient management, the application of 75% RDF + PGPR + Panchagavya spray showed significantly higher carbon output (5609 kg CE ha−1) and net carbon gain (5112 kg CE ha−1). However, significantly higher carbon efficiency, carbon sustainability index, and lower CFy were reported with integrated nutrient management over 100% RDF. Overall, selecting the J-1006 variety and applying 75% RDF + PGPR + Panchagavya spray for fodder maize cultivation could be the most productive in terms of dry fodder production, energy, and carbon efficiency approach

    How Did Research on Conservation Agriculture Evolve over the Years? A Bibliometric Analysis

    No full text
    Conservation agriculture has recently been a hot topic of agricultural research and has generated significant global interest. Conservation agriculture has three core principles: minimal soil disturbance, permanent soil cover, and crop rotations. The research on this topic has also witnessed a boom in recent years as the number of peer-reviewed literature on conservation agriculture is rising exponentially. This study critically examines all the peer-reviewed documents published on conservation agriculture from the 1990s to 2021 and indexed in the web of science core database. The search returned 3023 documents, which were then processed in the R-based bibliometric package for annual scientific production trend, source, author, document, citation, keyword analysis, and co-occurrence networking using VOSviewer. Our findings show remarkable growth in conservation agriculture research in recent times, although it witnessed a shortfall in 2021. Notably, 15 core source journals contribute the most to the field, while 8692 researchers have authored or co-authored at least a document on conservation agriculture. While the USA, India, and Australia are front runners in conservation agriculture research, the spread of the topic is worldwide

    How Did Research on Conservation Agriculture Evolve over the Years? A Bibliometric Analysis

    No full text
    Conservation agriculture has recently been a hot topic of agricultural research and has generated significant global interest. Conservation agriculture has three core principles: minimal soil disturbance, permanent soil cover, and crop rotations. The research on this topic has also witnessed a boom in recent years as the number of peer-reviewed literature on conservation agriculture is rising exponentially. This study critically examines all the peer-reviewed documents published on conservation agriculture from the 1990s to 2021 and indexed in the web of science core database. The search returned 3023 documents, which were then processed in the R-based bibliometric package for annual scientific production trend, source, author, document, citation, keyword analysis, and co-occurrence networking using VOSviewer. Our findings show remarkable growth in conservation agriculture research in recent times, although it witnessed a shortfall in 2021. Notably, 15 core source journals contribute the most to the field, while 8692 researchers have authored or co-authored at least a document on conservation agriculture. While the USA, India, and Australia are front runners in conservation agriculture research, the spread of the topic is worldwide

    Mechanistic Understanding of Leakage and Consequences and Recent Technological Advances in Improving Nitrogen Use Efficiency in Cereals

    No full text
    Although nitrogen (N) is the most limiting nutrient for agricultural production, its overuse is associated with environmental pollution, increased concentration of greenhouse gases, and several human and animal health implications. These implications are greatly affected by biochemical transformations and losses of N such as volatilization, leaching, runoff, and denitrification. Half of the globally produced N fertilizers are used to grow three major cereals—rice, wheat, and maize—and their current level of N recovery is approximately 30–50%. The continuously increasing application of N fertilizers, despite lower recovery of cereals, can further intensify the environmental and health implications of leftover N. To address these implications, the improvement in N use efficiency (NUE) by adopting efficient agronomic practices and modern breeding and biotechnological tools for developing N efficient cultivars requires immediate attention. Conventional and marker-assisted selection methods can be used to map quantitative trait loci, and their introgression in elite germplasm leads to the creation of cultivars with better NUE. Moreover, gene-editing technology gives the opportunity to develop high-yielding cultivars with improved N utilization capacity. The most reliable and cheap methods include agronomic practices such as site-specific N management, enhanced use efficiency fertilizers, resource conservation practices, precision farming, and nano-fertilizers that can help farmers to reduce the environmental losses of N from the soil–plant system, thus improving NUE. Our review illuminates insights into recent advances in local and scientific soil and crop management technologies, along with conventional and modern breeding technologies on how to increase NUE that can help reduce linked N pollution and health implications

    Impacts, Tolerance, Adaptation, and Mitigation of Heat Stress on Wheat under Changing Climates

    No full text
    Heat stress (HS) is one of the major abiotic stresses affecting the production and quality of wheat. Rising temperatures are particularly threatening to wheat production. A detailed overview of morpho-physio-biochemical responses of wheat to HS is critical to identify various tolerance mechanisms and their use in identifying strategies to safeguard wheat production under changing climates. The development of thermotolerant wheat cultivars using conventional or molecular breeding and transgenic approaches is promising. Over the last decade, different omics approaches have revolutionized the way plant breeders and biotechnologists investigate underlying stress tolerance mechanisms and cellular homeostasis. Therefore, developing genomics, transcriptomics, proteomics, and metabolomics data sets and a deeper understanding of HS tolerance mechanisms of different wheat cultivars are needed. The most reliable method to improve plant resilience to HS must include agronomic management strategies, such as the adoption of climate-smart cultivation practices and use of osmoprotectants and cultured soil microbes. However, looking at the complex nature of HS, the adoption of a holistic approach integrating outcomes of breeding, physiological, agronomical, and biotechnological options is required. Our review aims to provide insights concerning morpho-physiological and molecular impacts, tolerance mechanisms, and adaptation strategies of HS in wheat. This review will help scientific communities in the identification, development, and promotion of thermotolerant wheat cultivars and management strategies to minimize negative impacts of HS

    Tuberculosis: integrated studies for a complex disease 2050

    No full text
    Tuberculosis (TB) has been a disease for centuries with various challenges [1]. Like other places where challenges and opportunities come together, TB challenges were the inspiration for the scientific community to mobilize different groups for the purpose of interest. For example, with the emergence of drug resistance, there has been a huge volume of research on the discovery of new medicines and drug delivery methods and the repurposing of old drugs [2, 3]. Moreover, to enhance the capacity to detect TB cases, studies have sought diagnostics and biomarkers, with much hope recently expressed in the direction of point-of-care tests [4]. Despite all such efforts as being highlighted in 50 Chapters of this volume, we are still writing about TB and thinking about how to fight this old disease–implying that the problem of TB might be complex, so calling the need for an integrated science to deal with multiple dimensions in a simultaneous and effective manner. We are not the first one; there have been proposed integrated platform for TB research, integrated prevention services, integrated models for drug screening, integrated imaging protocol, integrated understanding of the disease pathogenesis, integrated control models, integrated mapping of the genome of the pathogen, etc. [5–12], to name some. These integrated jobs date back decades ago. So, a question arises: why is there a disease named TB yet? It might be due to the fact that this integration has happened to a scale that is not global, and so TB remains to be a problem, especially in resource-limited settings. Hope Tuberculosis: Integrated Studies for a Complex Disease helps to globalize the integrated science of TB.info:eu-repo/semantics/publishedVersio
    corecore