77 research outputs found
Multi-gluon helicity amplitudes with one off-shell leg within high energy factorization
Basing on the Slavnov-Taylor identities, we derive a new prescription to
obtain gauge invariant tree-level scattering amplitudes for the process g*g->Ng
within high energy factorization. Using the helicity method, we check the
formalism up to several final state gluons, and we present analytical formulas
for the the helicity amplitudes for N=2. We also compare the method with
Lipatov's effective action approach.Comment: 25 pages, quite a few figures, an appendix added, typos correcte
Matching Tree-Level Matrix Elements with Interleaved Showers
We present an implementation of the so-called CKKW-L merging scheme for
combining multi-jet tree-level matrix elements with parton showers. The
implementation uses the transverse-momentum-ordered shower with interleaved
multiple interactions as implemented in PYTHIA8. We validate our procedure
using e+e--annihilation into jets and vector boson production in hadronic
collisions, with special attention to details in the algorithm which are
formally sub-leading in character, but may have visible effects in some
observables. We find substantial merging scale dependencies induced by the
enforced rapidity ordering in the default PYTHIA8 shower. If this rapidity
ordering is removed the merging scale dependence is almost negligible. We then
also find that the shower does a surprisingly good job of describing the
hardness of multi-jet events, as long as the hardest couple of jets are given
by the matrix elements. The effects of using interleaved multiple interactions
as compared to more simplistic ways of adding underlying-event effects in
vector boson production are shown to be negligible except in a few sensitive
observables. To illustrate the generality of our implementation, we also give
some example results from di-boson production and pure QCD jet production in
hadronic collisions.Comment: 44 pages, 23 figures, as published in JHEP, including all changes
recommended by the refere
Sqrt{shat}_{min} resurrected
We discuss the use of the variable sqrt{shat}_{min}, which has been proposed
in order to measure the hard scale of a multi parton final state event using
inclusive quantities only, on a SUSY data sample for a 14 TeV LHC. In its
original version, where this variable was proposed on calorimeter level, the
direct correlation to the hard scattering scale does not survive when effects
from soft physics are taken into account. We here show that when using
reconstructed objects instead of calorimeter energy and momenta as input, we
manage to actually recover this correlation for the parameter point considered
here. We furthermore discuss the effect of including W + jets and t tbar+jets
background in our analysis and the use of sqrt{shat}_{min} for the suppression
of SM induced background in new physics searches.Comment: 23 pages, 9 figures; v2: 1 figure, several subsections and references
as well as new author affiliation added. Corresponds to published versio
Discovering the composite Higgs through the decay of a heavy fermion
A possible composite nature of the Higgs could be revealed at the early stage
of the LHC, by analyzing the channels where the Higgs is produced from the
decay of a heavy fermion. The Higgs production from a singly-produced heavy
bottom, in particular, proves to be a promising channel. For a value \lambda=3
of the Higgs coupling to a heavy bottom, for example, we find that, considering
a 125 GeV Higgs which decays into a pair of b-quarks, a discovery is possible
at the 8 TeV LHC with 30 fb^{-1} if the heavy bottom is lighter than roughly
530 GeV (while an observation is possible for heavy bottom masses up to 650
GeV). Such a relatively light heavy bottom is realistic in composite Higgs
models of the type considered and, up to now, experimentally allowed. At
\sqrt{s}=14 TeV the LHC sensitivity on the channel increases significantly.
With \lambda=3 a discovery can occur, with 100 fb^{-1}, for heavy bottom masses
up to 1040 GeV. In the case the heavy bottom was as light as 500 GeV, the 14
TeV LHC would be sensitive to the measure of the \lambda\ coupling in basically
the full range \lambda>1 predicted by the theory.Comment: 25 pp. v2: Minor changes. v3: Version accepted for publication in
JHEP. v4: typos fixe
Stealth Supersymmetry
We present a broad class of supersymmetric models that preserve R-parity but
lack missing energy signatures. These models have new light particles with
weak-scale supersymmetric masses that feel SUSY breaking only through couplings
to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson
pairs, with small mass splittings and hence small phase space for decays
carrying away invisible energy. The simplest scenario has low-scale SUSY
breaking, with missing energy only from soft gravitinos. This scenario is
natural, lacks artificial tunings to produce a squeezed spectrum, and is
consistent with gauge coupling unification. The resulting collider signals will
be jet-rich events containing false resonances that could resemble signatures
of R-parity violation. We discuss several concrete examples of the general
idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very
large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure
b-Initiated processes at the LHC: a reappraisal
Several key processes at the LHC in the standard model and beyond that
involve quarks, such as single-top, Higgs, and weak vector boson associated
production, can be described in QCD either in a 4-flavor or 5-flavor scheme. In
the former, quarks appear only in the final state and are typically
considered massive. In 5-flavor schemes, calculations include quarks in the
initial state, are simpler and allow the resummation of possibly large initial
state logarithms of the type into the
parton distribution function (PDF), being the typical scale of the
hard process. In this work we critically reconsider the rationale for using
5-flavor improved schemes at the LHC. Our motivation stems from the observation
that the effects of initial state logs are rarely very large in hadron
collisions: 4-flavor computations are pertubatively well behaved and a
substantial agreement between predictions in the two schemes is found. We
identify two distinct reasons that explain this behaviour, i.e., the
resummation of the initial state logarithms into the -PDF is relevant only
at large Bjorken and the possibly large ratios 's are
always accompanied by universal phase space suppression factors. Our study
paves the way to using both schemes for the same process so to exploit their
complementary advantages for different observables, such as employing a
5-flavor scheme to accurately predict the total cross section at NNLO and the
corresponding 4-flavor computation at NLO for fully exclusive studies.Comment: Fixed typo in Eq. (A.10) and few typos in Eq. (C.2) and (C.3
MadGraph 5 : Going Beyond
MadGraph 5 is the new version of the MadGraph matrix element generator,
written in the Python programming language. It implements a number of new,
efficient algorithms that provide improved performance and functionality in all
aspects of the program. It features a new user interface, several new output
formats including C++ process libraries for Pythia 8, and full compatibility
with FeynRules for new physics models implementation, allowing for event
generation for any model that can be written in the form of a Lagrangian.
MadGraph 5 builds on the same philosophy as the previous versions, and its
design allows it to be used as a collaborative platform where theoretical,
phenomenological and simulation projects can be developed and then distributed
to the high-energy community. We describe the ideas and the most important
developments of the code and illustrate its capabilities through a few simple
phenomenological examples.Comment: 37 pages, 5 figures, 7 table
Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC
Models based on Universal Extra Dimensions predict Kaluza-Klein (KK)
excitations of all Standard Model (SM) particles. We examine the pair
production of KK excitations of top- and bottom-quarks at the Large Hadron
Collider. Once produced, the KK top/bottom quarks can decay to -quarks,
leptons and the lightest KK-particle, , resulting in 2 -jets, two
opposite sign leptons and missing transverse momentum, thereby mimicing
top-pair production. We show that, with a proper choice of kinematic cuts, an
integrated luminosity of 100 fb would allow a discovery for an inverse
radius upto GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE
Photon Radiation with MadDipole
We present the automation of a subtraction method for photon radiation using
the dipole formalism within the MadGraph framework. The subtraction terms are
implemented both in dimensional regularization and mass regularization for
massless and massive cases and non-collinear-safe observables are accounted
for.Comment: 23 pages, 2 figures, minor additions, references added, version
published in JHE
Next-to-leading order QCD corrections to Higgs boson production in association with a photon via weak-boson fusion at the LHC
Higgs boson production in association with a hard central photon and two
forward tagging jets is expected to provide valuable information on Higgs boson
couplings in a range where it is difficult to disentangle weak-boson fusion
processes from large QCD backgrounds. We present next-to-leading order QCD
corrections to Higgs production in association with a photon via weak-boson
fusion at a hadron collider in the form of a flexible parton-level Monte Carlo
program. The QCD corrections to integrated cross sections are found to be small
for experimentally relevant selection cuts, while the shape of kinematic
distributions can be distorted by up to 20% in some regions of phase space.
Residual scale uncertainties at next-to-leading order are at the few-percent
level.Comment: 17 pages, 7 figures, 1 tabl
- …