45 research outputs found

    NMR-Assisted Structure Elucidation of an Anticancer Steroid-β-Enaminone Derivative

    No full text
    The fortuitous modification of a quinoline-proline-piperazine side chain linked to a steroid in the presence of lithium (trimethylsilyl) acetylide has generated an unknown product that is more active than its precursor. After having characterized two β-enaminones (two-carbon homologation compounds) that were generated from a simplified model side chain, we have identified the unknown product as being the β-enaminone steroid derivative 1. NMR analysis, especially two-dimensional (2D) experiments (correlation spectroscopy (COSY), NOE spectroscopy (NOESY), heteronuclear single-quantum correlation (HSQC) and heteronuclear multiple-bond correlation (HMBC)) provided crucial information that was found essential in the characterization of enaminone 1. We also proposed a mechanism to rationalize the formation of this biologically active compound

    A Targeted-Covalent Inhibitor of 17β-HSD1 Blocks Two Estrogen-Biosynthesis Pathways: In Vitro (Metabolism) and In Vivo (Xenograft) Studies in T-47D Breast Cancer Models

    No full text
    17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays an important role in estrogen-dependent breast tumor growth. In addition to being involved in the production of estradiol (E2), the most potent estrogen in women, 17β-HSD1 is also responsible for the production of 5-androsten-3β,17β-diol (5-diol), a weaker estrogen than E2, but whose importance increases after menopause. 17β-HSD1 is therefore a target of choice for the treatment of estrogen-dependent diseases such as breast cancer and endometriosis. After we developed the first targeted-covalent (irreversible) and non-estrogenic inhibitor of 17β-HSD1, a molecule named PBRM, our goal was to demonstrate its therapeutic potential. Enzymatic assays demonstrated that estrone (E1) and dehydroepiandrosterone (DHEA) were transformed into E2 and 5-diol in T-47D human breast cancer cells, and that PBRM was able to block these transformations. Thereafter, we tested PBRM in a mouse tumor model (cell-derived T-47D xenografts). After treatment of ovariectomized (OVX) mice receiving E1 or DHEA, PBRM given orally was able to reduce the tumor growth at the control (OVX) level without any observed toxic effects. Thanks to its irreversible type of inhibition, PBRM retained its anti-tumor growth effect, even after reducing its frequency of administration to only once a week, a clear advantage over reversible inhibitors

    Synthesis, NMR Characterization, and Antileukemic Activity of N-Nonanoylpiperazinyl-5α-Androstane-3α,17β-Diol A-Ring Derivatives

    No full text
    The combination of an androstane-3,17-diol nucleus and a 2β-N-alkylamidopiperazino sidechain is important for the anticancer activity of a new family of steroid derivatives. As the structure-activity relationship studies have so far been limited to the beta orientation of the substituent at position 2 of the steroid nucleus, a series of analogs (compounds 1–4) were synthesized to investigate the impact on biological activity of A-ring substitution. Nuclear magnetic resonance (NMR) analysis, especially using a series of 2D experiments, such as correlation spectroscopy (COSY), homonuclear Overhauser effect spectroscopy (NOESY), heteronuclear single-quantum correlation (HSQC), and heteronuclear multiple-bond correlation (HMBC) provided crucial information that was found essential in confirming the sidechain position and orientation of compounds 1–4. Assessment of their antiproliferative activity on leukemia HL-60 cells confirmed the best efficiency of the 2β-sidechain/3α-OH orientation (compound 1) compared to the other configurations tested (compounds 2–4)

    Chemical Synthesis and Biological Evaluation of 3-Substituted Estrone/Estradiol Derivatives as 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors Acting via a Reverse Orientation of the Natural Substrate Estrone

    No full text
    Estradiol (E2) plays an important role in the progression of diseases such as breast cancer and endometriosis. Inhibition of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1), the enzyme that catalyzes the last step in the biosynthesis of the estrogenic hormone E2, therefore constitutes an interesting approach for the treatment of these two estrogen-dependent diseases. In order to obtain new inhibitors of 17β-HSD1, the impact of a m-carbamoylphenyloxy group at position three of an estrane nucleus was evaluated by preparing three derivatives of estrone (E1) and E2 using a microwave-assisted synthesis of diaryl ethers. Their inhibitory activity was addressed on two cell lines (T-47D and Z-12) representative of breast cancer and endometriosis, respectively, but unlike T-47D cells, Z-12 cells were not found suitable for testing potential 17β-HSD1 inhibitors. Thus, the addition of the m-carbamoylphenyl group at C3 of E1 (compound 5) did not increase the inhibition of E1 to E2 transformation by 17β-HSD1 present in T-47D cells (IC50 = 0.31 and 0.21 μM for 5 and E1, respectively), and this negative effect was more obvious for E2 derivatives 6 and 10 (IC50 = 1.2 and 1.3 μM, respectively). Molecular docking allowed us to identify key interactions with 17β-HSD1 and to highlight these new inhibitors’ actions through an opposite orientation than natural enzyme substrate E1′s classical one. Furthermore, molecular modeling experiments explain the better inhibitory activity of E1-ether derivative 5, as opposed to the E2-ether derivatives 6 and 10. Finally, when tested on T-47D and Z-12 cells, compounds 5, 6 and 10 did not stimulate the proliferation of these two estrogen-dependent cell lines. In fact, they reduced it

    Impacts de la création des CSSS sur les pratiques psychosociales dans le programme Perte d’autonomie liée au vieillissement (PALV)

    Get PDF
    Résultats d’une recherche menée dans 4 CSSS (régions de Montréal et du Saguenay) montrant l’impact de la création des CSSS sur les services aux personnes âgées en perte d’autonomie (type d’intervention, type de gestion, accès aux soins). Results of a study in 4 CSSS (Montreal and Saguenay regions) that demonstrates the impact of the CSSS creation on services to vulnerable seniors (interventions, management and access to services)
    corecore