7 research outputs found

    Evidence for nodal superconductivity in LaFePO

    Full text link
    In several iron-arsenide superconductors there is strong evidence for a fully gapped superconducting state consistent with either a conventional s-wave symmetry or an unusual s±s_\pm state where there the gap changes sign between the electron and hole Fermi surface sheets. Here we report measurements of the penetration depth λ(T)\lambda(T) in very clean samples of the related iron-phosphide superconductor, LaFePO, at temperatures down to ∼\sim 100 mK. We find that λ(T)\lambda(T) varies almost perfectly linearly with TT strongly suggesting the presence of gap nodes in this compound. Taken together with other data, this suggests the gap function may not be generic to all pnictide superconductors

    Single crystal of superconducting SmFeAsO1-xFy grown at high pressure

    Full text link
    Single crystals of SmFeAsO1-xFy of a size up to 120 micrometers have been grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450 C using the cubic anvil high-pressure technique. The superconducting transition temperature of the obtained single crystals varies between 45 and 53 K.Obtained crystals are characterized by a full diamagnetic response in low magnetic fields and by a high critical current density in high magnetic fields. Structural refinement has been performed on single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO1-xFy at 1302 C.Comment: 12 pages, 3 tables, 6 figure

    Microwave response of superconducting pnictides: extended s±s_{\pm} scenario

    Get PDF
    We consider a two-band superconductor with relative phase π\pi between the two order parameters as a model for the superconducting state in ferropnictides. Within this model we calculate the microwave response and the NMR relaxation rate. The influence of intra- and interband impurity scattering beyond the Born and unitary limits is taken into account. We show that, depending on the scattering rate, various types of power law temperature dependencies of the magnetic field penetration depth and the NMR relaxation rate at low temperatures may take place.Comment: 11 pages, 5 figure

    High-pressure growth of fluorine-free SmFeAsO1−x_{1-x} superconducting single crystals

    Full text link
    Superconducting single crystals of SmFeAsO1−x_{1-x} without fluorine doping were grown at a pressure of 3.3 GPa and a temperature of 1350-1450 ∘^\circC by using the self-flux method. Plate-like single crystals of a few-150 μ\mum in their lateral size were obtained. Single crystals showed the superconducting transition at about 53.5 K with a narrow transition width of 0.5 K. The synchrotron-irradiated x-ray diffractometry patterns and high-angle-annular-dark-field scanning transmission electron microscopy images point to the high quality of the crystals with a well-defined layered tetragonal structure. The chemical compositions of the crystals were estimated by using the electron-probe x-ray microanalysis.Comment: 12 pages, 3 figure

    Nuclear magnetic relaxation and superfluid density in Fe-pnictide superconductors: An anisotropic \pm s-wave scenario

    Full text link
    We discuss the nuclear magnetic relaxation rate and the superfluid density with the use of the effective five-band model by Kuroki et al. [Phys. Rev. Lett. 101, 087004 (2008)] in Fe-based superconductors. We show that a fully-gapped anisotropic \pm s-wave superconductivity consistently explains experimental observations. In our phenomenological model, the gaps are assumed to be anisotropic on the electron-like \beta Fermi surfaces around the M point, where the maximum of the anisotropic gap is about four times larger than the minimum.Comment: 10 pages, 8 figures; Submitted versio
    corecore