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Abstract. We consider a two-band superconductor with relative phase π

between the two order parameters as a model for the superconducting state
in ferropnictides. Within this model we calculate the microwave response
and the NMR relaxation rate. The influence of intra- and interband impurity
scattering beyond the Born and unitary limits is taken into account. We show
that, depending on the scattering rate, various types of power law temperature
dependences of the magnetic field penetration depth and the NMR relaxation
rate at low temperatures may take place.
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1. Introduction

The recent discovery of Fe-based superconducting compounds [1] has stimulated the research
of unconventional superconductors. One of the most important and still unsettled issues is the
symmetry of the superconducting gap function. So far, different experiments produce conflicting
results. As regards measurements of the penetration depth and the NMR relaxation rate, a
power law behavior at low temperatures is now clearly established, which is a signature of
unconventional order parameter symmetry. One possible scenario of a pairing symmetry state is
a superconductor consisting of two relatively small semimetallic Fermi surfaces, separated by
a finite wave vector Q with the relative phase π between the two order parameters. This is the
so-called s± model, first proposed in [2]. In our previous work [3], we have shown that the
s± model with strong impurity scattering can explain the power law behavior of the NMR
relaxation rate. Therefore, it is important to extend this formalism to address microwave
properties of a two-band s± superconductor, in particular the magnetic field penetration depth
and real part of complex conductivity, since experimental data are now available for single
crystals of Fe-based superconductors.

In this paper, we calculate the microwave response and the NMR relaxation rate for a model
s± superconductor in which impurity scattering is treated beyond the Born limit and discuss the
relevance to the experimental data for Fe-based superconducting compounds.

2. General expressions

We describe a multiband superconductor in the framework of the Eliashberg approach equations
for the renormalization function Z i(ω) and complex order parameter φi(ω). As shown in
the first reference of [21], the Bardeen–Cooper–Schrieffer (BCS) approach can give highly
inaccurate results in the case of interband superconductivity due to the BCS neglect of mass
renormalization. In addition there is evidence for strong coupling in the pnictides, with many
experimentally determined 1/Tc ratios substantially exceeding the BCS value of 1.76, and so
we therefore employ the Eliashberg equations.

On the real frequency axis they have the following form, assuming an uniform
(band-independent) impurity scattering (see, e.g., [3]–[5])

φi(ω)=

∑
j

∞∫
−∞

dzK1
i j (z, ω)Reg1j (z)+ i

γ

2D
(
g11 (ω)− g12 (ω)

)
,

(Z i(ω)− 1)ω =

∑
j

∞∫
−∞

dzK Z
i j (z, ω)RegZ

j (z)+ i
γ

2D
(
gZ

1 (ω)+ gZ
2 (ω)

)
, (1)

where D = 1 − σ + σ [(gZ
1 (ω)+ gZ

2 (ω))
2 + (g11 (ω)− g12 (ω))

2]. For our model gZ
i (ω)= ni(ω)

Z i(ω)ω/Di(ω), g1i (ω)= ni(ω)φi(ω)/Di(ω), where D j(ω)=

√
[Z j(ω)ω]2 −φ2

j (ω) and ni(ω)

is a partial density of states (DOS). γ = 2cσ/πN (0) is the normal-state scattering rate, N (0) is
the total DOS (i.e. summed over both bands) at the Fermi level, c is the impurity concentration
and σ =

[πN (0)v]2

1+[πN (0)v]2 is the impurity strength (σ → 0 corresponds to the Born limit, while σ = 1
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to the unitary one). The kernels K1,Z
i j (z, ω) describe the electron–boson interaction and have

forms

K1,Z
i j (z, ω)=

∞∫
0

d�
B̃i j(�)

2

[
tanh(z/2T )+ coth(�/2T )

z +�−ω− iδ
− {�→ −�}

]
,

where the spin-fluctuation coupling function is B̃i j(�)= Bi j(�)= λi jπω�sf/(�
2
sf +ω2) for the

equation for φ, and |Bi j(�)| for the equation for Z . Here λi j is the coupling constant pairing
band i with band j and �sf is the spin fluctuation frequency. Note that all retarded interactions
enter the equations for the renormalization factor Z with a positive sign.

We note that the implementation of the band-independent impurity scattering is contained
in the second term on the right-hand side of equation (1), where the γ is applied to both
bands (albeit with a relative minus sign in the first equation due to the order parameter
sign change between bands). We have chosen such a band-independent scattering for several
reasons, including consistency with the previously published work and to avoid a proliferation
of parameter choices. However, a recent work of Senga and Kontani [6] suggests that this
assumption is justified on an experimental basis. Their figure 4 shows that only γinter/γintra

between 0.9 and 1 is consistent with the several sets of nuclear spin relaxation rate T 1
1 data

showing T 2.5–T 3.0 behavior over a very large temperature range. The theoretical rationale for
such a comparatively large interband scattering rate remains unclear, but can be plausibly related
to the inherent disorder in these systems, with the dopant atoms themselves acting as scattering
centers.

The microwave conductivity in the London (local, q ≡ 0) limit is given by

σ i(ω)= ω2
pl,i5i(ω)/4π iω, (2)

where5i(ω) is an analytical continuation to the real frequency axis of the polarization operator
(see, e.g., [7]–[11])

5i(ω)=

{
iπT

∑
n

5i(ωn, νm)

}
iωmH⇒ω+i0+

,

5i(ω)=

∫
dω′

 tanh (ω−/2T )

DR

∣∣∣∣∣∣
1 −

ω̃R
−
ω̃R

+ +φR
−
φR

+√
(ω̃R

−)
2 − (φR

−)
2
√
(ω̃R

+ )
2 − (φR

+ )
2


−

tanh (ω+/2T )

D A

1 −
ω̃A

−
ω̃A

+ +φA
−
φA

+√
(ω̃A

−)
2 − (φA

−)
2
√
(ω̃A

+ )
2 − (φA

+ )
2


−

tanh (ω+/2T )− tanh (ω−/2T )

Da

∣∣∣∣∣∣
1 −

ω̃A
−
ω̃R

+ +φA
−
φR

+√
(ω̃A

−)
2 − (φA

−)
2
√
(ω̃R)2 − (φR

+ )
2

 , (3)

where

DR,A
=

√
(ω̃

R,A
+ )2 − (φ

R,A
+ )2 +

√
(ω̃

R,A
− )2 − (φ

R,A
− )2
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and

Da
=

√
(ω̃R

+ )
2 − (φR

+ )
2 −

√
(ω̃A

−)
2 − (φA

−)
2,

ω± = ω′
±ω/2, and the index R(A) corresponds to the retarded (advanced) branch of the

complex function F R(A)
= ReF ± iImF (the band index i is omitted) and ω̃ = Z i(ω)ω. Here

ω
αβ

pl =

√
8πe2〈Ni(0)vαFv

β

F 〉 is the plasma frequency in different directions. For the dirty case,
the low frequency limits of expressions (2) and (3) can be reduced to the strong coupling
generalization of the famous Mattis–Bardeen expression [12]

σ1(ω→ 0)= σ dc
1

∫
∞

0
dω

(
−
∂ f (ω)

∂ω

){[
RegZ

1 (ω)
]2

+
[
Reg11 (ω)

]2
}

+σ dc
2

∫
∞

0
dω

(
−
∂ f (ω)

∂ω

){[
RegZ

2 (ω)
]2

+
[
Reg12 (ω)

]2
}
, (4)

where σ dc
i = Ni(0)v2

Fe2τi is a contribution to the static conductivity from the i th band. Note that
in the London limit there are no cross-terms connected two bands.

An important characteristic of the superconducting state is the penetration depth of
the magnetic field λL ,αβ in the local (London) limit, which is related to the imaginary part
of the optical conductivity by

1/λ2
L ,αβ = lim

ω→0
4πω Im σ αβ(ω,q = 0)/c2

≡ ω
αβ2
pl,i Re5i(ω = 0)/c2, (5)

where α, β denote again Cartesian coordinates and c is the velocity of light. If we neglect
strong-coupling effects (or, more generally, Fermi-liquid effects) then for a clean uniform
superconductor at T = 0 we have the relation λL ,αβ = c/ωαβpl . Impurities and interaction effects
drastically enhance the penetration depth, and it is suitable to introduce a so-called ‘superfluid
plasma frequency’ ωsf

pl,αβ by the relation ωsf
pl,αβ = c/λL ,αβ . It has often been mentioned that this

function corresponds to the charge density of the superfluid condensate, but we would like to
point out that this is only the case for noninteracting clean systems at T = 0.

In the two-band model, we have the standard expression (neglecting vertex corrections)

1/λ2
L ,αβ(T )≡ (ωsf

pl,αβ(T )/c)
2
=

∑
i

(
ω
αβ

pl,i

c

)2

πT
∞∑

n=−∞

1̃2
i (n)[

ω̃2
i (n)+ 1̃2

i (n)
]3/2 , (6)

where ω̃(n) and 1̃(n) are the solutions of equation (1) continued to the imaginary (Matsubara)
frequencies (1̃i(n)= φi(iωn), ω̃i(n)= ωn Z i(iωn)). The calculations along these formulae can
be thus presented in the form of the effective superfluid plasma frequency, ωsf

pl.
For the NMR relaxation rate, following [13], we can write down the following general

expressions.

1/T1T = −
1

2π
lim
ω→0

∑
q

[
F(q)

]2 Imχ±(q, ω)
ω

, (7)

where χ±(q, ω) is an analytical continuation to the real axis of the Fourier transform of the
correlator

χ±(r, τ )= − 〈〈Tτ S+(r,−iτ)S−(0, 0)〉〉imp.
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averaged over the impurity ensemble. Here S±(r,−iτ)= exp(Hτ)S±(r)exp(−Hτ), where
H is the electron Hamiltonian, τ denotes the imaginary time, and S+(r)= ψ

†
↑
(r)ψ↓(r) and

S−(r)= ψ
†
↓
(r)ψ↑(r). As a result we have

1/T1T =
1

π 2

∑
k1,k2

∫
∞

−∞

dω

(
−
∂ f (ω)

∂ω

)∑
i, j

[
Fi j(k1 − k2)

]2
[

Im
ωZ i,k1(ω)

Di,k1(ω)
Im
ωZ j,k2(ω)

D j,k2(ω)

+ Im
ξi,k1

Di,k1(ω)
Im

ξ j,k2

D j,k2(ω)
+ Im

φi,k1(ω)

Di,k1(ω)
Im
φ j,k2(ω)

D j,k2(ω)

]
. (8)

Here Di,k1(ω)= [ωZ i,k1(ω)]
2
− ξ 2

i,k1
−φ2

i,k1
(ω), ξi,k1 is the bare energy. For the Fermi-contact

interaction

1

T1T
∝

∫
∞

0
dω

(
−
∂ f (ω)

∂ω

){[
RegZ

1 (ω)+ RegZ
2 (ω)

]2
+
[
Reg11 (ω)+ Reg12 (ω)

]2
}
. (9)

This expression contains the cross-term in contrast to the microwave conductivity. In this paper,
in the T 1

1 calculation only these cross terms are used to emphasize the interband character
of the superconductivity, as it is these cross terms that are most enhanced by the nearly
antiferromagnetic state within a more detailed random phase approximation (RPA). For a single
band system, the full expression is proportional to equation (4) when σ dc

1 → ∞ [14], but in
multiband systems 1/T1T and σ1(ω→ 0) can behave differently.

3. Results and discussion

It is well known that pair-breaking impurity scattering can induce substantial sub-gap DOS,
which can produce power-law low temperature behavior in a whole host of thermodynamic
quantities, such as specific heat, London penetration depth, nuclear spin relaxation rate and even
optical conductivity. Such behavior has been well-studied in the two canonical limits of weak
(Born) scattering and strong (unitary) scattering [15], but the intermediate regime has received
almost no attention. In addition, with the advent of the multiband superconductivity in MgB2 and
the apparent multiband, primarily interband superconductivity in the pnictides, comes a need
for further study of the intermediate regime in an interband case. Recent studies [16, 17, 19]
have addressed the effects of impurities in the pnictides, but only in the Born or unitary limits.
Here we study the important and likely more realistic intermediate regime, with σ , effectively
the scattering strength, varied in the range from σ = 0 corresponding to the Born limit to σ = 1
corresponding to the unitary limit. As stated earlier, for all calculations the impurity scattering
rate γintra = γinter = 0.810.

We will now illustrate the above discussion using specific numerical models. First, we
present numerical solutions of the Eliashberg equations using the spin-fluctuation model for the
spectral function of the intermediate boson: Bi j(ω)= λi jπω�sf/(�

2
sf +ω2), with the parameters

�sf = 25 meV, λ11 = λ22 = 0.5 and λ12 = λ21 = −2. The rather large coupling constants are
an attempt to model the rather large experimentally observed ratio 1/Tc. This set gives a
reasonable value for Tc ' 26.7 K. A similar model was used in [20] to describe optical properties
of ferropnictides. This model was also used in [3] and for consistency is used here. As stated
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Figure 1. The quasiparticle DOS for the three indicated cases. The near-Born
case σ = 0.1 retains a small gap, while the intermediate case shows a monotonic
DOS and the near-unitary case is gapless.

earlier, we further assume that each surface features the same gap5, and that the intraband
impurity scattering rate and interband scattering rate are both equal to 0.810, where 10 is
the low-temperature limiting value of the superconducting gap 1. As in [3], we have chosen
a relatively large impurity scattering, which is to be expected considering the early state of
pnictide sample preparation and the limited availability of large single crystals.

We begin with the DOS, shown below in figure 1. Several effects are apparent. Firstly,
for all three σ values the substantial peak usually present at ω =10 (about 6 meV here)
is substantially truncated, with much spectral weight transferred below the gap. However,
the detailed sub-gap behavior depends radically upon the scattering strength σ . The near-
Born case σ = 0.1 still retains a small minigap of approximately 1.5 meV, which will lead to
exponentially activated behavior below about 4 K. Although some data have shown evidence
for such exponentially activated behavior, there is also significant data showing power-law
behavior. The intermediate case σ = 0.4 shows a monotonically increasing DOS and essentially
no minigap, leading to power-law behavior, as proposed in [3]. Finally, the near-unitary case
σ = 0.8 also shows a monotonically increasing DOS, but is nearly constant at low energy. We
will see that such behavior leads to a quadratic temperature dependence of the penetration depth,
even without the assumption of the strict unitary limit. Gross et al [18] some time ago noted in
a different context that T 2 behavior does not require the unitary limit. We note parenthetically
that the behavior depicted depends rather strongly upon the large value of impurity scattering
assumed; the first two cases will yield more exponentially activated behavior if the scattering
rate is much less strong, while the near-unitary case can potentially [4] lead to a non-monotonic
DOS.
5 In the weak coupling limit, the gap ratio at T → Tc in the s± model is

√
N1/N2, where Ni are DOSs. LDA

calculations yield Ne/Nh < 1.2, therefore 11 and 12 differ by less than 10%. Strong coupling effects additionally
reduce the gaps ratio, see [21].
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Figure 2. The inverse squared penetration depth. The near-Born limit approaches
the BCS ‘two-fluid’ calculation (∝ 1 − T 4) at low temperatures, mimicking
exponential behavior, while the other two cases show power-law behavior, as
in figure 3.

Figure 3. The low temperature behavior of the penetration depth, showing the
evolution with decreasing σ from T 2 gapless behavior toward the exponential-
mimicking T 4 character.

In figure 2 is shown the inverted squared London penetration depth 1/λ2(T ), the so-called
superfluid density for several cases as indicated in the figure. In all cases the temperature
dependence of 1/λ2(T ) is different from the standard two-fluid (Gorter–Casimir) model
λ−2(T )= λ−2(0)[1 − (T/Tc)

4] that is similar to the BCS result. Due to the sign change between
gaps, the interband component of the scattering matrix is strongly pair-breaking, analogously to
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Figure 4. The real part of the microwave conductivity. Note the substantial
increase with scattering strength at low temperature.

magnetic scattering in s-wave superconductors. As a result, the superfluid density shows near-
exponential character at low temperature in the near-Born case (σ = 0.1), while the other two
cases (σ = 0.4 and 0.8) exhibit power-law behavior at low T, with the actual power varying
between 2 and 3.

A more detailed view of the low-temperature λ(T ) power law behavior is presented in
figure 3, which shows 1λ(T )/λT =0 for the same three cases. We see that the near-Born limit
case (σ = 0.1) approaches T 4 behavior, reminiscent of a two-fluid model, while the near-unitary
case shows fairly robust T 2 behavior and the intermediate case falls between these two limits, as
one would naively expect. Experimental data available so far [23]–[25] are consistent with either
T 2, or T 4 or exponential (gapped) behavior. Within our model, both results can be explained by
proper choice of the impurity scattering rate. It is interesting to note that the T 2 dependence we
obtain corresponds to strongly gapless regime. Similar results were obtained recently in [19] but
in the Born limit only.

Figure 4 shows the calculated real part of the microwave conductivity for the three cases
above. The microwave conductivity (figure 4) σ1(T ) does not show the coherence peak near Tc.
The suppression is connected with strong-coupling effects (see [22]). Below Tc the behavior of
the σ1(T ) is determined by the filling of the impurity induced states below1. Qualitatively it is
similar to the temperature dependence of the NMR relaxation rate (see figure 5), but in the latter
case the Hebel–Slichter peak is additionally reduced for the s± model by the different kind of
the coherence factor. Almost all of the non-canonical BCS behavior derives from the interband
component of the scattering matrix, which results in near constant behavior at low T for the
near-unitary case, as might be expected from the form of equation (4), in which a squared DOS
enters. The intermediate case shows power law behavior as well, with the precise exponent not
extracted.

Finally we turn in figure 5 to the nuclear spin relaxation rate T −1
1 for the same three σ

scenarios. Note also that following convention we have plotted (T1T )−1 rather than T −1
1 , and

all power-law references here mean (T T1)
−1. T1 has been a source of substantial controversy
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Figure 5. The temperature dependence of the relaxation rate 1/T1T , exhibiting
near-Korringa behavior for σ = 0.8 and power-law behavior for the other
curves.

in the pnictides due to the existence of several datasets [26]–[29] showing near-T 2 behavior
throughout nearly the entire temperature range, although there now exist data [30] deviating
from this behavior. Several things are apparent from the plot: first of all, the near-Born limit
case shows power law behavior (1/T1T ∼ T 3) throughout nearly the entire temperature range
below Tc, although it will ultimately revert to exponentially activated behavior at the lowest
temperatures. Substantial impurity scattering in the Born limit can thus mimic much of the
behavior commonly ascribed to nodes, as was noted in [17, 19]. The intermediate case shows
an approximate T 1.5 behavior, as was described in [3], which is largely driven by the monotonic
DOS presented in figure 1, where the same parameters are chosen. Korringa behavior results
in the near-unitary limit, as is again a direct consequence of the corresponding behavior of the
DOS in figure 1, but does not result in either of the first two cases unless the scattering rate γ is
increased significantly beyond 0.810.

It should now be clear that impurity scattering in various strengths (i.e. σ ), if sufficient
impurity concentrations are present, can produce a wide variety of power-law behavior in many
thermodynamic quantities, even in the near-Born limit. In the s± state, interband impurities
are clearly much more effective in creating such behavior. This has implications for the
ongoing lively debate about pairing symmetry, with significant numbers of proposals for nodal
superconductivity in the pnictides and some experimental evidence for such behavior.

In conclusion, we have calculated the microwave response and the NMR relaxation rate
for a superconductor in s± symmetry state by solving Eliashberg equations with a model
spectrum and taking into account impurity scattering beyond the Born limit. We show that the T 2

temperature behavior of the penetration depth and the NMR relaxation rate at low temperatures
can be reproduced in this model. We have also demonstrated the dramatic effect of the impurity
scattering on the real part of the microwave conductivity, which in particular results in near
constant behavior at low T for the near-unitary case.
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