9,563 research outputs found
High performance alloy electroforming
Electroformed copper and nickel are used in structural applications for advanced propellant combustion chambers. An improved process has been developed by Bell Aerospace Textron, Inc. wherein electroformed nickel-manganese alloy has demonstrated superior mechanical and thermal stability when compared to previously reported deposits from known nickel plating processes. Solution chemistry and parametric operating procedures are now established and material property data is established for deposition of thick, large complex shapes such as the Space Shuttle Main Engine. The critical operating variables are those governing the ratio of codeposited nickel and manganese. The deposition uniformity which in turn affects the manganese concentration distribution is affected by solution resistance and geometric effects as well as solution agitation. The manganese concentration in the deposit must be between 2000 and 3000 ppm for optimum physical properties to be realized. The study also includes data regarding deposition procedures for achieving excellent bond strength at an interface with copper, nickel-manganese or INCONEL 718. Applications for this electroformed material include fabrication of complex or re-entry shapes which would be difficult or impossible to form from high strength alloys such as INCONEL 718
Three approaches to the classification of inland wetlands
In the Dismal Swamp project, seasonal, color-infrared aerial photographs and LANDSAT digital data were interpreted for a detailed analysis of the vegetative communities in a large, highly altered wetland. In Western Tennessee, seasonal high altitude color-infrared aerial photographs provided the hydrologic and vegetative information needed to map inland wetlands, using a classification system developed for the Tennessee Valley Region. In Florida, color-infrared aerial photographs were analyzed to produce wetland maps using three existing classification systems to evaluate the information content and mappability of each system. The methods used in each of the three projects can be extended or modified for use in the mapping of inland wetlands in other parts of the United States
Recommended from our members
Improving methods and procedures for reuse and exchange of open educational resources
Recommended from our members
Direct Freeform Fabrication of Spatially Heterogeneous Living Cell-Impregnated Implants
The objectives of this work are the development of the processes, materials, and tooling to
directly “3-D print” living, pre-seeded, patient-specific implants of spatially heterogeneous
compositions. The research presented herein attempts to overcome some of the challenges to
scaffolding, such as the difficulty of producing spatially heterogeneous implants that require
varied seeding densities and/or cell-type distributions. In the proposed approach, living implants
are fabricated by the layer-wise deposition of pre-cell-seeded alginate hydrogel. Although
alginate hydrogels have been previously used to mold living implants, the properties of the
alginate formulations used for molding were not suitable for 3-D printing. In addition to changing
the formulation to make the alginate hydrogels “printable,” we developed a robotic hydrogel
deposition system and supporting CAD software to deposit the gel in arbitrary geometries. We
demonstrated this technology’s capabilities by printing alginate gel implants of multiple materials
with various spatial heterogeneities, including, implants with completely embedded material
clusters. The process was determined to be both viable (94±5% n=15) and sterile (less than one
bacterium per 0.9 µL after 8 days of incubation). Additionally, we demonstrated the printing of a
meniscus cartilage-shaped gel generated directly from a CT Scan. The proposed approach may
hold advantages over other tissue printing efforts [5,9]. This technology has the potential to
overcome challenges to scaffolding and could enable the efficient fabrication of spatially
heterogeneous, patient-specific, living implants.Mechanical Engineerin
A guideline for heavy ion radiation testing for Single Event Upset (SEU)
A guideline for heavy ion radiation testing for single event upset was prepared to assist new experimenters in preparing and directing tests. How to estimate parts vulnerability and select an irradiation facility is described. A broad brush description of JPL equipment is given, certain necessary pre-test procedures are outlined and the roles and testing guidelines for on-site test personnel are indicated. Detailed descriptions of equipment needed to interface with JPL test crew and equipment are not provided, nor does it meet the more generalized and broader requirements of a MIL-STD document. A detailed equipment description is available upon request, and a MIL-STD document is in the early stages of preparation
Measuring the Long-Term Effects of Action Workouts
This study analyzed aircraft inspection data to determine if quality enhancements were realized after an Action Workout (AWO) was accomplished. Pretest and post-test assessment data from three separate units were analyzed to determine whether overall quality improvements were made. This study operationally defined quality in terms of Quality Verification Assessment ratings compiled before and after each AWO event. Comparisons were made to determine if overall quality improved, declined, or remained unchanged. Parametric t-tests and nonparametric chi-square analyses were used to determine the significance of any differences between the pretest and post-test data sets. The results provide plausible evidence that quality enhancements can be realized as a result of Action Workouts. Results at two of the three units analyzed indicate that overall quality of major aircraft inspection processes improved considerably, possibly as a result of the Action Workout intervention. Results at the third site, however, remained essentially unchanged. The evidence also suggests that many of the changes and improvement ideas implemented during the AWO are seemingly intact and being utilized by respective maintenance personnel. This may also indicate process owner buy-in and acceptance of change, two essential principles of quality improvement. This research establishes a firm foundation for future research efforts
- …