34 research outputs found

    {\em Ab initio} Quantum Monte Carlo simulation of the warm dense electron gas in the thermodynamic limit

    Get PDF
    We perform \emph{ab initio} quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with linear response theory we are able to remove finite-size errors from the potential energy over the entire warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown \emph{et al.}~[PRL \textbf{110}, 146405 (2013)]. Extensive new QMC results for up to N=1000N=1000 electrons enable us to compute the potential energy VV and the exchange-correlation free energy FxcF_{xc} of the macroscopic electron gas with an unprecedented accuracy of ∣ΔV∣/∣V∣,∣ΔFxc∣/∣F∣xc∼10−3|\Delta V|/|V|, |\Delta F_{xc}|/|F|_{xc} \sim 10^{-3}. A comparison of our new data to the recent parametrization of FxcF_{xc} by Karasiev {\em et al.} [PRL {\bf 112}, 076403 (2014)] reveals significant deviations to the latter

    Accurate exchange-correlation energies for the warm dense electron gas

    Get PDF
    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average NN-body density matrices for uniform electron gas systems of up to 10124^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the kk-space configuration path-integral formalism disagree by up to ∼\sim1010\% at certain reduced temperatures T/TF≤0.5T/T_F \le 0.5 and densities rs≤1r_s \le 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for T/TF≥1T/T_F \ge 1 and rs≤2r_s \le 2.Comment: Accepted version: added free energy data and restructured text. Now includes supplementary materia
    corecore