2 research outputs found

    Longitudinal associations of DNA methylation and sleep in children: a meta-analysis

    No full text
    Background: Sleep is important for healthy functioning in children. Numerous genetic and environmental factors, from conception onwards, may influence this phenotype. Epigenetic mechanisms such as DNA methylation have been proposed to underlie variation in sleep or may be an early-life marker of sleep disturbances. We examined if DNA methylation at birth or in school age is associated with parent-reported and actigraphy-estimated sleep outcomes in children. Methods: We meta-analysed epigenome-wide association study results. DNA methylation was measured from cord blood at birth in 11 cohorts and from peripheral blood in children (4-13 years) in 8 cohorts. Outcomes included parent-reported sleep duration, sleep initiation and fragmentation problems, and actigraphy-estimated sleep duration, sleep onset latency and wake-after-sleep-onset duration. Results: We found no associations between DNA methylation at birth and parent-reported sleep duration (n = 3658), initiation problems (n = 2504), or fragmentation (n = 1681) (p values above cut-off 4.0 Ă— 10-8). Lower methylation at cg24815001 and cg02753354 at birth was associated with longer actigraphy-estimated sleep duration (p = 3.31 Ă— 10-8, n = 577) and sleep onset latency (p = 8.8 Ă— 10-9, n = 580), respectively. DNA methylation in childhood was not cross-sectionally associated with any sleep outcomes (n = 716-2539). Conclusion: DNA methylation, at birth or in childhood, was not associated with parent-reported sleep. Associations observed with objectively measured sleep outcomes could be studied further if additional data sets become available. Keywords: Actigraphy; Child; Epigenomics; Longitudinal studies; Meta-analysis; Methylation; Sleep

    Uncovering the genetic architecture of broad antisocial behavior through a genome-wide association study meta-analysis

    No full text
    Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 28 discovery samples (N = 85,359) and five independent replication samples (N = 8058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, p = 6.32 × 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ strain) from controls (BALB/cByJ strain). Polygenic risk score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial genetic correlations of ASB with mental health (depression rg = 0.63, insomnia rg = 0.47), physical health (overweight rg = 0.19, waist-to-hip ratio rg = 0.32), smoking (rg = 0.54), cognitive ability (intelligence rg = -0.40), educational attainment (years of schooling rg = -0.46) and reproductive traits (age at first birth rg = -0.58, father's age at death rg = -0.54). Our findings provide a starting point toward identifying critical biosocial risk mechanisms for the development of ASB
    corecore