3 research outputs found

    Redox Modifications of Carbon Dots Shape Their Optoelectronics

    Get PDF
    Carbon dots (CDs) are 1–10 nm scaled complex nanostructures with a wide range of applications and show unconventional photophysical behavior upon excitation. In this article, we have unveiled some of the underlying mechanisms and excited state dynamics of CDs by perturbing their interface with oxidizing and reducing agents. With no substantial alteration in size of surface-treated oxidized (^OCDs), reduced (^RCDs), and untreated CDs (^UCDs), we observe marked changes in their charge transport properties and diverse spectral signatures in singlet and triplet excited states. Fine tuning of the spectral behavior of nanomaterials is often treated as an outcome of quantum confinement of the excitons. Herein with different spectroscopic techniques along with conducting atomic force microscopy and triplet–triplet absorption, we elucidate that, not just confinement, the structural modification at the surface also dictates optoelectronic behavior by altering some properties such as energy band gap, quantum tunneling across the metal–CD–metal junction, and yield of triplet excitons

    Effects of Mg Doping to a LiCoO<sub>2</sub> Channel on the Synaptic Plasticity of Li Ion-Gated Transistors

    No full text
    Artificial synapses with ideal functionalities are essential in hardware neural networks to allow for energy-efficient analog computing. However, the realization of linear and symmetric weight updates in real synaptic devices has proven challenging and ultimately limits the online training capabilities of neural network systems. Herein, we investigate the effect of Mg doping on a LiCoO2 (LCO) channel in a Li ion-gated synaptic transistor, so as to improve long-term and short-term plasticity. Two transistor structures, based on a lithium phosphorus oxynitride electrolyte, were examined by using undoped LCO and Mg-doped LCO as the channel material between the source and drain electrodes. It was found that Mg doping increased the initial channel conductance by 3 orders of magnitude, which is probably due to the substitution of Co3+ by Mg2+ and the compensation of hole creation. It was further found that the doped channel transistor showed good retention characteristics and better linearity of long-term potentiation and depression when voltage pulses were applied to the gate electrode. The improved retention and linearity are attributed to an extended range of the insulator-to-conductor transition by Mg doping and Li-ion extraction/insertion cooperated in the LCO channel. Using the obtained synaptic weight update, artificial neural network simulations demonstrated that the doped channel transistor shows an image recognition accuracy of ∼80% for handwritten digits, which is higher than ∼65% exhibited by the undoped channel transistor. Mg doping also improved short-term plasticity such as paired-pulse facilitation/depression and Hebbian spike timing-dependent plasticity. These results indicate that elemental doping to the channel of Li ion-gated synaptic transistors could be a useful procedure for realizing robust neuromorphic systems based on analog computing
    corecore