14 research outputs found

    Optimal vitamin D spurs serotonin : 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines

    Get PDF
    Background: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. Results: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51–59% repressed by 10 nM 1,25D treatment of RN46AB14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. Conclusions: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission

    Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers.

    No full text
    Altered expression of Mcl-1, an anti-apoptotic member of the Bcl-2 family, has been linked to the progression and outcome of a variety of malignancies. We have previously reported the overexpression of Mcl-1 protein in human oral cancers. The present study aimed to evaluate the clinicopathological significance of the expression of three known Mcl-1 isoforms in oral tumors and the effect of targeting Mcl-1L isoform on chemosensitivity of oral cancer cells.The expression of Mcl-1 isoforms- Mcl-1L, Mcl-1S & Mcl-1ES was analyzed in 130 paired oral tumors and 9 oral cell lines using quantitative real-time PCR & protein by western blotting. The Mcl-1 mRNA levels were correlated with clinicopathological parameters and outcome of oral cancer patients. The effect of Mcl-1L shRNA or Obatoclax (a small molecule Mcl-1 inhibitor), in combination with Cisplatin on chemosensitivity of oral cancer cells was also assessed.Anti-apoptotic Mcl-1L was predominantly expressed, over low or undetectable pro-apoptotic Mcl-1S and Mcl-1ES isoforms. The Mcl-1L transcripts were significantly overexpressed in all cancer cell lines and in 64% oral tumors versus adjacent normals (P<0.02). In oral cancer patients, high Mcl-1L expression was significantly associated with node positivity (P = 0.021), advanced tumor size (P = 0.013) and poor overall survival (P = 0.002). Multivariate analysis indicated Mcl-1L to be an independent prognostic factor for oral cancers (P = 0.037). Mcl-1L shRNA knockdown or its inhibition by Obatoclax in combination with Cisplatin synergistically reduced viability and growth of oral cancer cells than either treatment alone.Our studies suggest that overexpression of Mcl-1L is associated with poor prognosis and chemoresistance in oral cancers. Mcl-1L is an independent prognostic factor and a potential therapeutic target in oral cancers

    Correlation of Mcl-1 isoform expression & clinicopathological parameters in oral cancer patients.

    No full text
    <p>Correlation of Mcl-1 isoform expression & clinicopathological parameters in oral cancer patients.</p

    Clinicopathological characteristics of 130 oral cancer patients.

    No full text
    <p>Clinicopathological characteristics of 130 oral cancer patients.</p

    Correlation of Mcl-1L mRNA expression in oral normal versus tumor tissues.

    No full text
    <p>(a) Expression of Mcl-1L mRNA in normal vs. oral tumors of different subsites (* P≤0.02); (b) Mcl-1L protein expression in adjacent normal versus tumors.</p

    Down regulation of Mcl-1L expression in oral cancer cell lines.

    No full text
    <p>(a & b) shRNA mediated down regulation of Mcl-1L mRNA & protein in AW8507, UPCI:SCC040 & SCCC29B oral cancer cells as compared to the control.</p

    Survival analysis of oral cancer patients.

    No full text
    <p>(a-c) Kaplan–Meier estimates of overall survival of oral cancer patients with low or high expression of Mcl-1 isoforms; (d) Multivariate analysis of oral cancer patients.</p

    Effect of combination of BH3 mimetic Obatoclax and Cisplatin on cell viability & growth.

    No full text
    <p>(a) Confocal microscopic representative images of AW8507 cells post different treatments; (b) Assessment of percent cell viability of oral cancer cells post different treatments by trypan blue dye exclusion assay (* P<0.05, vs. individual treatments); (c) Analysis of proliferation of oral cancer cells after different treatments by MTT assay. (* P<0.05, vs. individual treatments).</p

    Bioactive Dietary VDR Ligands Regulate Genes Encoding Biomarkers of Skin Repair That Are Associated with Risk for Psoriasis

    No full text
    Treatment with 1,25-dihydroxyvitamin D-3 (1,25D) improves psoriasis symptoms, possibly by inducing the expression of late cornified envelope (LCE)3 genes involved in skin repair. In psoriasis patients, the majority of whom harbor genomic deletion of LCE3B and LCE3C (LCE3C_LCE3B-del), we propose that certain dietary analogues of 1,25D activate the expression of residual LCE3A/LCE3D/LCE3E genes to compensate for the loss of LCE3B/LCE3C in the deletant genotype. Herein, human keratinocytes (HEKn) homozygous for LCE3C_LCE3B-del were treated with docosahexaenoic acid (DHA) and curcumin, two low-affinity, nutrient ligands for the vitamin D receptor (VDR). DHA and curcumin induce the expression of LCE3A/LCE3D/LCE3E mRNAs at concentrations corresponding to their affinity for VDR. Moreover, immunohistochemical quantitation revealed that the treatment of keratinocytes with DHA or curcumin stimulates LCE3 protein expression, while simultaneously opposing the tumor necrosis factor-alpha (TNF)-signaled phosphorylation of mitogen activated protein (MAP) kinases, p38 and Jun amino-terminal kinase (JNK), thereby overcoming inflammation biomarkers elicited by TNF challenge. Finally, DHA and curcumin modulate two transcription factors relevant to psoriatic inflammation, the activator protein-1 factor Jun B and the nuclear receptor NR4A2/NURR1, that is implicated as a mediator of VDR ligand-triggered gene control. These findings provide insights into the mechanism(s) whereby dietary VDR ligands alter inflammatory and barrier functions relevant to skin repair, and may provide a molecular basis for improved treatments for mild/moderate psoriasis.NIH [DK033351, CA140285]; POHOFI Inc., Pre-College Intern Scholarship Award; American Skin Association (ASA) Carson Research Scholar Award in Psoriasis; UW-Madison Skin Disease Research Center (SDRC) Pilot and Feasibility Research Award from NIH/NIAMS [P30 AR066524]; University of Louisiana at Monroe School of Pharmacy; University of Arizona, Department of Basic Medical SciencesThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Optimal vitamin D spurs serotonin: 1,25-dihydroxyvitamin D represses serotonin reuptake transport (SERT) and degradation (MAO-A) gene expression in cultured rat serotonergic neuronal cell lines

    No full text
    Background: Diminished brain levels of two neurohormones, 5-hydroxytryptamine (5-HT; serotonin) and 1,25-dihydroxyvitamin D3 (1,25D; active vitamin D metabolite), are proposed to play a role in the atypical social behaviors associated with psychological conditions including autism spectrum disorders and depression. We reported previously that 1,25D induces expression of tryptophan hydroxylase-2 (TPH2), the initial and rate-limiting enzyme in the biosynthetic pathway to 5-HT, in cultured rat serotonergic neuronal cells. However, other enzymes and transporters in the pathway of tryptophan metabolism had yet to be examined with respect to the actions of vitamin D. Herein, we probed the response of neuronal cells to 1,25D by quantifying mRNA expression of serotonin synthesis isozymes, TPH1 and TPH2, as well as expression of the serotonin reuptake transporter (SERT), and the enzyme responsible for serotonin catabolism, monoamine oxidase-A (MAO-A). We also assessed the direct production of serotonin in cell culture in response to 1,25D. Results: Employing quantitative real-time PCR, we demonstrate that TPH-1/-2 mRNAs are 28- to 33-fold induced by 10 nM 1,25D treatment of cultured rat serotonergic neuronal cells (RN46A-B14), and the enhancement of TPH2 mRNA by 1,25D is dependent on the degree of neuron-like character of the cells. In contrast, examination of SERT, the gene product of which is a target for the SSRI-class of antidepressants, and MAO-A, which encodes the predominant catabolic enzyme in the serotonin pathway, reveals that their mRNAs are 51-59% repressed by 10 nM 1,25D treatment of RN46A-B14 cells. Finally, serotonin concentrations are significantly enhanced (2.9-fold) by 10 nM 1,25D in this system. Conclusions: These results are consistent with the concept that vitamin D maintains extracellular fluid serotonin concentrations in the brain, thereby offering an explanation for how vitamin D could influence the trajectory and development of neuropsychiatric disorders. Given the profile of gene regulation in cultured RN46A-B14 serotonergic neurons, we conclude that 1,25D acts not only to induce serotonin synthesis, but also functions at an indirect, molecular-genomic stage to mimic SSRIs and MAO inhibitors, likely elevating serotonin in the CNS. These data suggest that optimal vitamin D status may contribute to improving behavioral pathophysiologies resulting from dysregulation of serotonergic neurotransmission.NIH [DK033351, CA140285]; University of Arizona, Department of Basic Medical SciencesOpen access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore