708 research outputs found

    Alien Registration- Mallen, Agnes M. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/21914/thumbnail.jp

    Alien Registration- Mallen, Agnes M. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/21914/thumbnail.jp

    The EXPLORE Project I: A Deep Search for Transiting Extrasolar Planets

    Get PDF
    (Abridged) We discuss the design considerations of the EXPLORE (EXtra-solar PLanet Occultation REsearch) project, a series of transiting planet searches using 4-m-class telescopes to continuously monitor a single field of stars in the Galactic Plane in each ~2 week observing campaign. We discuss the general factors which determine the efficiency and the number of planets found by a transit search, including time sampling strategy and field selection. The primary goal is to select the most promising planet candidates for radial velocity follow-up observations. We show that with very high photometric precision light curves that have frequent time sampling and at least two detected transits, it is possible to uniquely solve for the main parameters of the eclipsing system (including planet radius) based on several important assumptions about the central star. Together with a measured spectral type for the star, this unique solution for orbital parameters provides a powerful method for ruling out most contaminants to transiting planet candidates. For the EXPLORE project, radial velocity follow-up observations for companion mass determination of the best candidates are done on 8-m-class telescopes within two or three months of the photometric campaigns. This same-season follow-up is made possible by the use of efficient pipelines to produce high quality light curves within weeks of the observations. We conclude by presenting early results from our first search, EXPLORE I, in which we reached <1% rms photometric precision (measured over a full night) on ~37,000 stars to I <= 18.2.Comment: accepted by ApJ. Main points unchanged but more thorough discussion of some issues. 36 pages, including 14 figure

    Multifractal nature of ocular aberration dynamics of the human eye

    Get PDF
    Ocular monochromatic aberrations display dynamic behavior even when the eye is fixating on a stationary stimulus. The fluctuations are commonly characterized in the frequency domain using the power spectrum obtained via the Fourier transform. In this paper we used a wavelet-based multifractal analytical approach to provide a more in depth analysis of the nature of the aberration fluctuations. The aberrations of five subjects were measured at 21 Hz using an open-view Shack-Hartmann sensor. We show that the aberration dynamics are multifractal. The most frequently occurring Hölder exponent for the rms wavefront error, averaged across the five subjects, was 0.31 ± 0.10. This suggests that the time course of the aberration fluctuations is antipersistant. Future applications of multifractal analysis are discussed

    Applying quantitative bias analysis to estimate the plausible effects of selection bias in a cluster randomised controlled trial: secondary analysis of the Primary care Osteoarthritis Screening Trial (POST).

    Get PDF
    BACKGROUND: Selection bias is a concern when designing cluster randomised controlled trials (c-RCT). Despite addressing potential issues at the design stage, bias cannot always be eradicated from a trial design. The application of bias analysis presents an important step forward in evaluating whether trial findings are credible. The aim of this paper is to give an example of the technique to quantify potential selection bias in c-RCTs. METHODS: This analysis uses data from the Primary care Osteoarthritis Screening Trial (POST). The primary aim of this trial was to test whether screening for anxiety and depression, and providing appropriate care for patients consulting their GP with osteoarthritis would improve clinical outcomes. Quantitative bias analysis is a seldom-used technique that can quantify types of bias present in studies. Due to lack of information on the selection probability, probabilistic bias analysis with a range of triangular distributions was also used, applied at all three follow-up time points; 3, 6, and 12 months post consultation. A simple bias analysis was also applied to the study. RESULTS: Worse pain outcomes were observed among intervention participants than control participants (crude odds ratio at 3, 6, and 12 months: 1.30 (95% CI 1.01, 1.67), 1.39 (1.07, 1.80), and 1.17 (95% CI 0.90, 1.53), respectively). Probabilistic bias analysis suggested that the observed effect became statistically non-significant if the selection probability ratio was between 1.2 and 1.4. Selection probability ratios of > 1.8 were needed to mask a statistically significant benefit of the intervention. CONCLUSIONS: The use of probabilistic bias analysis in this c-RCT suggested that worse outcomes observed in the intervention arm could plausibly be attributed to selection bias. A very large degree of selection of bias was needed to mask a beneficial effect of intervention making this interpretation less plausible

    The EXPLORE Project: A Deep Search for Transiting Extra-Solar Planets

    Get PDF
    Searching for transits provides a very promising technique for finding close-in extra-solar planets. Transiting planets present the advantage of allowing one to determine physical properties such as mass and radius unambiguously. The EXPLORE (EXtra-solar PLanet Occultation REsearch) project is a transit search project carried out using wide-field CCD imaging cameras on 4-m class telescopes, and 8-10m class telescopes for radial velocity verification of the photometric candidates. We describe some of the considerations that go into the design of the EXPLORE transit search to maximize the discovery rate and minimize contaminating objects that mimic transiting planets. We show that high precision photometry (2 to 10 millimag) and high time sampling (few minutes) are crucial for sifting out contaminating signatures, such as grazing binaries. We have completed two searches using the 8k MOSAIC camera at the CTIO4m and the CFH12k camera at CFHT, with runs covering 11 and 16 nights, respectively. We obtained preliminary light curves for approximately 47,000 stars with better than ~1% photometric precision. A number of light curves with flat-bottomed eclipses consistent with being produced by transiting planets has been discovered. Preliminary results from follow-up spectroscopic observations using the VLT UVES spectrograph and the Keck HIRES spectrograph obtained for a number of the candidates are presented. Data from four of these can be interpreted consistently as possible planet candidates, although further data are still required for definitive confirmations.Comment: 11 pages. To appear in the Proceedings of the SPIE conference: Astronomical Telescopes and Instrumentatio
    corecore