8 research outputs found

    Strong Purcell effect observed in single thick shell CdSe/CdS nanocrystals coupled to localized surface plasmons

    Full text link
    High quality factor dielectric cavities designed to a nanoscale accuracy are mostly used to increase the spontaneous emission rate of a single emitter. Here we show that the coupling, at room temperature, between thick shell CdSe/CdS nanocrystals and random metallic films offers a very promising alternative approach. Optical modes confined at the nanoscale induce strong Purcell factors reaching values as high as 60. Moreover the quantum emission properties can be tailored: strong antibunching or radiative biexcitonic cascades can be obtained with high photon collection efficiency and extremely reduced blinking.Comment: 16 pages, 7 figure

    Field-induced spin cycloidal modulation to antiferromagnetic transition and possible flexomagnetic effect in BiFeO3 nanoparticles

    No full text
    Beyond its various properties, the model multiferroic BiFeO3 (BFO) displays a rich magnetic structure illustrated in the bulk by its long period (∌62 nm) spin cycloidal modulation. Here, BFO nanoparticles are produced by a facile hydrothermal method and show average size of 8 nm and a narrow size distribution, as determined using x-ray diffraction analysis and transmission electron microscopy images. Mössbauer spectrometry (MS) unambiguously reveals that a cycloidal modulation does still exists with particles about 5 times smaller than the bulk cycloid. Combining macroscopic magnetic measurements and in situ Mössbauer spectrometry, we demonstrate that a critical magnetic field of ∌0.2 T destabilizes the cycloidal modulation to lead to a homogenous antiferromagnetic state, as the result of magnetic anisotropy due to magnetoelastic and surface-confinement effects. More interestingly, further increasing of the external magnetic field up to 8 T does not change the average magnetic hyperfine field and results into multiple Mössbauer sextets we propose to explain by a flexomagnetic effect i.e. magnetic anisotropies resulting from strain gradients due to a continuous variation of the coupling between magnetization and the structural distortion from the surface to the particle core
    corecore