51 research outputs found

    Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    Get PDF
    We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to the protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general

    Gelatin-based 3D conduits for transdifferentiation of mesenchymal stem cells into Schwann cell-like phenotypes

    Get PDF
    In this study, gelatin-based 3D conduits with three different microstructures (nanofibrous, macroporous and ladder-like) were fabricated for the first time via combined molding and thermally induced phase separation (TIPS) technique for peripheral nerve regeneration. The effects of conduit microstructure and mechanical properties on the transdifferentiation of bone marrow-derived mesenchymal stem cells (MSCs) into Schwann cell (SC) like phenotypes were examined to help facilitate neuroregeneration and understand material-cell interfaces. Results indicated that 3D macroporous and ladder-like structures enhanced MSC attachment, proliferation and spreading, creating interconnected cellular networks with large numbers of viable cells compared to nanofibrous and 2D-tissue culture plate counterparts. 3D-ladder-like conduit structure with complex modulus of ∼0.4 × 106 Pa and pore size of ∼150 μm provided the most favorable microenvironment for MSC transdifferentiation leading to ∼85% immunolabeling of all SC markers. On the other hand, the macroporous conduits with complex modulus of ∼4 × 106 Pa and pore size of ∼100 μm showed slightly lower (∼65% for p75, ∼75% for S100 and ∼85% for S100β markers) immunolabeling. Transdifferentiated MSCs within 3D-ladder-like conduits secreted significant amounts (∼2.5 pg/mL NGF and ∼0.7 pg/mL GDNF per cell) of neurotrophic factors, while MSCs in macroporous conduits released slightly lower (∼1.5 pg/mL NGF and 0.7 pg/mL GDNF per cell) levels. PC12 cells displayed enhanced neurite outgrowth in media conditioned by conduits with transdifferentiated MSCs. Overall, conduits with macroporous and ladder-like 3D structures are promising platforms in transdifferentiation of MSCs for neuroregeneration and should be further tested in vivo. Statement of Significance This manuscript focuses on the effect of microstructure and mechanical properties of gelatin-based 3D conduits on the transdifferentiation of mesenchymal stem cells to Schwann cell-like phenotypes. This work builds on our recently accepted manuscript in Acta Biomaterialia focused on multifunctional 2D films, and focuses on 3D microstructured conduits designed to overcome limitations of current strategies to facilitate peripheral nerve regeneration. The comparison between conduits fabricated with nanofibrous, macroporous and ladder-like microstructures showed that the ladder-like conduits showed the most favorable environment for MSC transdifferentiation to Schwann-cell like phenotypes, as seen by both immunolabeling as well as secretion of neurotrophic factors. This work demonstrates the importance of controlling the 3D microstructure to facilitate tissue engineering strategies involving stem cells that can serve as promising approaches for peripheral nerve regeneration.US Army Medical Research and Materiel Command (W81XWH-11-1-0700); Stem Cell Biology Fund; Stanley Endowed Chai

    Assembling PNIPAM-Capped Gold Nanoparticles in Aqueous Solutions

    Full text link
    Employing small angle X-ray scattering (SAXS), we explore the conditions under which the assembly of gold nanoparticles (AuNPs) grafted with the thermo-sensitive polymer Poly(N-isopropylacrylamide) (PNIPAM) emerges. We find that short-range order assembly emerges by combining the addition of electrolytes or poly-electrolytes with raising the temperature of the suspensions above the lower-critical solution temperature (LCST) of PNIPAM. Our results show that the longer the PNIPAM chain is, the better organization in the assembled clusters. Interestingly, without added electrolytes, there is no evidence of AuNP assembly as a function of temperature, although untethered PNIPAM is known to undergo a coil-to-globule transition above its LCST. This study demonstrates another approach to assembling potential thermo-sensitive nanostructures for devices by leveraging the unique properties of PNIPAM.Comment: Published at ACS Macro Letters, DOI - https://doi.org/10.1021/acsmacrolett.3c0061

    Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β

    Get PDF
    Niclosamide (Nic), an FDA-approved anthelmintic drug, is reported to have anti-cancer efficacy and is being assessed in clinical trials for various solid tumors. Based on its ability to target multiple signaling pathways, in the present study, we evaluated the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. We observed an anti-cancerous effect of this drug as shown by the G0/G1 phase cell cycle arrest, inhibition of PC cell viability, colony formation, and migration. Our results revealed the involvement of mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. Significant reduction of Nic-induced reactive oxygen species (ROS) and cell death in the presence of a selective autophagy inhibitor spautin-1 demonstrated autophagy as a major contributor to Nic-mediated cell death. Mechanistically, Nic inhibited the interaction between BCL2 and Beclin-1 that supported the crosstalk of autophagy and apoptosis. Further, Nic treatment resulted in Gsk3β inactivation by phosphorylating its Ser-9 residue leading to upregulation of Sufu and Gli3, thereby negatively impacting hedgehog signaling and cell survival. Nic induced autophagic cell death, and p-Gsk3b mediated Sufu/Gli3 cascade was further confirmed by Gsk3β activator, LY-294002, by rescuing inactivation of Hh signaling upon Nic treatment. These results suggested the involvement of a non-canonical mechanism of Hh signaling, where p-Gsk3β acts as a negative regulator of Hh/Gli1 cascade and a positive regulator of autophagy-mediated cell death. Overall, this study established the therapeutic efficacy of Nic for PC by targeting p-Gsk3β mediated non-canonical Hh signaling and promoting mTORC1-dependent autophagy and cell death

    Two-dimensional assembly of nanoparticles grafted with charged-end-group polymers

    Full text link
    {\bf Hypothesis:} Introducing charged terminal groups to polymers that graft nanoparticles enables Coulombic control over their assembly by tuning pH and salinity of aqueous suspensions. {\bf Experiments:} Gold nanoparticles (AuNPs) are grafted with poly(ethylene glycol) (PEG) terminated with CH3 (charge neutral), COOH (negatively charged), or NH2 (positively charged) groups. The nanoparticles are characterized using dynamic light scattering, {\zeta}-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) techniques are employed to determine the density profile and in-plane structure of the AuNP assembly across and on the aqueous surface. {\bf Findings:} The assembly of PEG-AuNPs at the liquid/vapor interface can be tuned by adjusting pH or salinity, particularly for COOH terminals. However, the effect is less pronounced for NH2 terminals. These distinct assembly behaviors are attributed to the overall charge of PEG-AuNPs and the conformation of PEG. The COOH-PEG corona is the most compact, resulting in smaller superlattice constants. The net charge per particle depends not only on the PEG terminal groups but also on the cation sequestration of PEG and the intrinsic negative charge of the AuNP surface. NH2-PEG, due to its closeness to overall charge neutrality and the presence of hydrogen bonding, enables the assembly of NH2-PEG-AuNPs more readily.Comment: Submitted to the Journal of Colloid and Interface Science, and it's under review currentl
    • …
    corecore