3 research outputs found

    Focal Therapy in Kidney Cancer

    Get PDF
    The widespread use of imaging has led to an unprecedented increase in the diagnosis of small renal masses. Incidence rate has increased worldwide and most notable in older population (more than 75 years). There has been an evident revolution in the management of patients with small renal masses. Treatment strategies include active surveillance, partial nephrectomy, radical nephrectomy and focal ablative therapies. Nephron sparing surgery for small renal tumours offers comparable cancer-specific survival and better overall survival when compared to radical nephrectomy. Nevertheless, complications related to extirpative surgery must be taken into consideration. Thermal ablative therapies were developed in an attempt to provide a reproducible treatment option with low risk of complications. Energy based renal ablation therapy offers treatment flexibility, technically less challenging procedure with acceptable oncological outcomes

    A Simple Clinical Tool for Stratifying Risk of Clinically Significant CKD after Nephrectomy: Development and Multinational Validation.

    Get PDF
    BACKGROUND: Clinically significant CKD following surgery for kidney cancer is associated with increased morbidity and mortality, but identifying patients at increased CKD risk remains difficult. Simple methods to stratify risk of clinically significant CKD after nephrectomy are needed. METHODS: To develop a tool for stratifying patients' risk of CKD arising after surgery for kidney cancer, we tested models in a population-based cohort of 699 patients with kidney cancer in Queensland, Australia (2012-2013). We validated these models in a population-based cohort of 423 patients from Victoria, Australia, and in patient cohorts from single centers in Queensland, Scotland, and England. Eligible patients had two functioning kidneys and a preoperative eGFR ≥60 ml/min per 1.73 m2. The main outcome was incident eGFR <45 ml/min per 1.73 m2 at 12 months postnephrectomy. We used prespecified predictors-age ≥65 years old, diabetes mellitus, preoperative eGFR, and nephrectomy type (partial/radical)-to fit logistic regression models and grouped patients according to degree of risk of clinically significant CKD (negligible, low, moderate, or high risk). RESULTS: Absolute risks of stage 3b or higher CKD were <2%, 3% to 14%, 21% to 26%, and 46% to 69% across the four strata of negligible, low, moderate, and high risk, respectively. The negative predictive value of the negligible risk category was 98.9% for clinically significant CKD. The c statistic for this score ranged from 0.84 to 0.88 across derivation and validation cohorts. CONCLUSIONS: Our simple scoring system can reproducibly stratify postnephrectomy CKD risk on the basis of readily available parameters. This clinical tool's quantitative assessment of CKD risk may be weighed against other considerations when planning management of kidney tumors and help inform shared decision making between clinicians and patients

    External validation of yonsei nomogram predicting chronic kidney disease development after partial nephrectomy: An international, multicenter study

    No full text
    Objective: To externally validate Yonsei nomogram. Methods: From 2000 through 2018, 3526 consecutive patients underwent on-clamp PN for cT1 renal masses at 23 centers were included. All patients had two kidneys, preoperative eGFR ≥60 ml/min/1.73 m2, and a minimum follow-up of 12&nbsp;months. New-onset CKD was defined as upgrading from CKD stage I or II into CKD stage ≥III. We obtained the CKD-free progression probabilities at 1, 3, 5, and 10 years for all patients by applying the nomogram found at https://eservices.ksmc.med.sa/ckd/. Thereafter, external validation of Yonsei nomogram for estimating new-onset CKD stage ≥III was assessed by calibration and discrimination analysis. Results and limitation: Median values of patients' age, tumor size, eGFR and follow-up period were 47 years (IQR: 47-62), 3.3 cm (IQR: 2.5-4.2), 90.5 ml/min/1.73 m2 (IQR: 82.8-98), and 47&nbsp;months (IQR: 27-65), respectively. A total of 683 patients (19.4%) developed new-onset CKD. The 5-year CKD-free progression rate was 77.9%. Yonsei nomogram demonstrated an AUC of 0.69, 0.72, 0.77, and 0.78 for the prediction of CKD stage ≥III at 1, 3, 5, and 10 years, respectively. The calibration plots at 1, 3, 5, and 10 years showed that the model was well calibrated with calibration slope values of 0.77, 0.83, 0.76, and 0.75, respectively. Retrospective database collection is a limitation of our study. Conclusions: The largest external validation of Yonsei nomogram showed good calibration properties. The nomogram can provide an accurate estimate of the individual risk of CKD-free progression on long-term follow-up
    corecore