972 research outputs found

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure

    Optical Transverse Injection in Laser-Plasma Acceleration

    Get PDF
    International audienceLaser-wakefield acceleration constitutes a promising technology for future electron accelerators. A crucial step in such an accelerator is the injection of electrons into the wakefield, which will largely determine the properties of the extracted beam. We present here a new paradigm of colliding-pulse injection, which allows us to generate high-quality electron bunches having both a very low emittance (0.17  mm·mrad) and a low energy spread (2%), while retaining a high charge (∼100  pC) and a short duration (3 fs). In this paradigm, the pulse collision provokes a transient expansion of the accelerating bubble, which then leads to transverse electron injection. This mechanism contrasts with previously observed optical injection mechanisms, which were essentially longitudinal. We also specify the range of parameters in which this new type of injection occurs and show that it is within reach of existing high-intensity laser facilities

    Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Full text link
    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.Comment: 7 pages, 7 figure

    In Vivo Volume and Hemoglobin Dynamics of Human Red Blood Cells

    Get PDF
    Human red blood cells (RBCs) lose ∼30% of their volume and ∼20% of their hemoglobin (Hb) content during their ∼100-day lifespan in the bloodstream. These observations are well-documented, but the mechanisms for these volume and hemoglobin loss events are not clear. RBCs shed hemoglobin-containing vesicles during their life in the circulation, and this process is thought to dominate the changes in the RBC physical characteristics occurring during maturation. We combine theory with single-cell measurements to investigate the impact of vesiculation on the reduction in volume, Hb mass, and membrane. We show that vesicle shedding alone is sufficient to explain membrane losses but not volume or Hb losses. We use dry mass measurements of human RBCs to validate the models and to propose that additional unknown mechanisms control volume and Hb reduction and are responsible for ∼90% of the observed reduction. RBC population characteristics are used in the clinic to monitor and diagnose a wide range of conditions including malnutrition, inflammation, and cancer. Quantitative characterization of cellular maturation processes may help in the early detection of clinical conditions where maturation patterns are altered

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Numerical growth of emittance in simulations of laser-wakefield acceleration

    Get PDF
    International audienceTransverse emittance is a crucial feature of laser-wakefield accelerators, yet accurately reproducing its value in numerical simulations remains challenging. It is shown here that, when the charge of the bunch exceeds a few tens of picocoulombs, particle-in-cell (PIC) simulations erroneously overestimate the emittance. This is mostly due the interaction of spurious Cherenkov radiation with the bunch, which leads to a steady growth of emittance during the simulation. A new computational scheme is proposed, which is free of spurious Cherenkov radiation. It can be easily implemented in existing PIC codes and leads to a substantial reduction of the emittance growth

    Transverse dynamics of an intense electron bunch traveling through a pre-ionized plasma

    No full text
    International audienceThe propagation of a relativistic electron bunch through a plasma is an important problem in both plasma-wakefield acceleration and laser-wakefield acceleration. In those situations, the charge of the accelerated bunch is usually large enough to drive a relativistic wakefield, which then affects the transverse dynamics of the bunch itself. Yet to date, there is no fully relativistic, fully electromagnetic model that describes the generation of this wakefield and its feedback on the bunch. In this article, we derive a model which takes into account all the relevant relativistic and electromagnetic effects involved in the problem. A very good agreement is found between the model and the results of particle-in-cell simulations. The implications of high-charge effects for the transport of the bunch are discussed in detail
    • …
    corecore