5 research outputs found

    Sex-chrom, a database on plant sex chromosomes

    Get PDF
    This work has been supported by the Dirección General de Investigación Científica y Técnica (Spanish Government: CGL2016-75694-P AEI/FEDER, UE; CGL2017-84297-R), by the Generalitat de Catalunya (‘Ajuts a grups de recerca consolidats’ 2017SGR01116’), by the Czech Science Foundation (grants 16-08698S, 18-06147S and 19-03442S) and by CIJA PRESERVATION, SL. SG benefitted from a Ramón y Cajal contract (RYC-2014-16608) from the government of Spain, and SB and NS received Erasmus + grants from the European Union.Introduction Types of plant sex chromosomes, sex determination systems and their diversity Model systems in sex chromosome research Materials and Methods Information sources Data mining Database web environment and construction Results and Discussion Future directions Acknowledgements Author contribution

    Bioprospecting of a Novel Plant Growth-Promoting Bacterium Bacillus altitudinis KP-14 for Enhancing Miscanthus × giganteus Growth in Metals Contaminated Soil

    No full text
    Use of plant growth-promoting bacteria (PGPB) for cultivation of the biofuel crop Miscanthus × giganteus (Mxg) in post-military and post-mining sites is a promising approach for the bioremediation of soils contaminated by metals. In the present study, PGPB were isolated from contaminated soil and screened for tolerance against abiotic stresses caused by salinity, pH, temperature, and lead (Pb). Selected strains were further assessed and screened for plant growth-promoting attributes. The isolate showing the most potential, Bacillus altitudinis KP-14, was tested for enhancement of Mxg growth in contaminated soil under greenhouse conditions. It was found to be highly tolerant to diverse abiotic stresses, exhibiting tolerance to salinity (0–15%), pH (4–8), temperature (4–50 °C), and Pb (up to 1200 ppm). The association of B. altitudinis KP-14 with Mxg resulted in a significant (p ≤ 0.001) impact on biomass enhancement: the total shoot and dry root weights were significantly enhanced by 77.7% and 55.5%, respectively. The significant enhancement of Mxg biomass parameters by application of B. altitudinis KP-14 strongly supports the use of this strain as a biofertilizer for the improvement of plant growth in metal-contaminated soils

    Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia

    No full text
    Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period

    Stress Response of Miscanthus Plants and Soil Microbial Communities: A Case Study in Metals and Hydrocarbons Contaminated Soils

    No full text
    Second-generation biofuel crop miscanthus is one of the most promising plants tested for phytomanagement of contaminated sites. In this preliminary pot case study, the most used hybrid Miscanthus x giganteus was cultivated in three different real contaminated soils: agricultural soil contaminated with Cd; post-military soil slightly contaminated with Zn, Pb and Cd; and soil contaminated by petroleum industry with metals and hydrocarbons. The stress response of plants and soil microbial communities was monitored to receive data that are important for successful phytomanagement application. With metals only, the plant grew well, and chlorophyll fluorescence measurement proved their good vitality. Changes in leaf anatomy (leaf thickness and sclerenchyma cells area) were additionally determined in post-military soil compared to agricultural. On the contrary, in petroleum-contaminated soil, the biomass yield was too reduced and also physiological parameters were significantly decreased. The response of microbial communities also differed. In agricultural soil, no microbial stress was determined. In post-military soil, it became reduced during the experiment, and in petroleum contamination, it increased year-on-year. It could be concluded that miscanthus is suitable for cultivation in metals contaminated soils with potential for microbial communities support, but in soil contaminated by the petroleum industry, its application did not seem meaningful

    Enhanced Carbon Sequestration in Marginal Land Upon Shift towards Perennial C<sub>4</sub><i>Miscanthus × giganteus</i>: A Case Study in North-Western Czechia

    No full text
    Bioenergy crops such as Miscanthus × giganteus are foreseeable as an alternative source to replace fossil fuel and reduce greenhouse gas emissions. They are also assessed as an environment-friendly solution for polluted, marginal and low-quality agricultural soils. Several studies had been launched on soil organic carbon sequestration potentials of miscanthus culture along with its impacts on restoring soil functionality, most of which focus on the long-term basis of the plant’s cultivation. Nevertheless, information concerning the short term impacts as well as the situation in Czechia is still scarce. In this context, a field experiment was launched in 2017 in a poor-quality agricultural land in the city of Chomutov (North-Western Czechia) to compare the impacts of the perennial C4 miscanthus with an annual C3 forage crop (wheat) on the soil carbon stocks as well as enhancing its functionality. Results through the 0–30 cm soil profile examination showed that miscanthus plants played a role in improving the studied soil physico-chemical (bulk density and soil organic carbon concentrations) and biological (Phospholipid fatty acids stress indicator, basal respiration and fluorescein diacetate hydrolytic activity) parameters. The naturally occurring δ13C concentrations were used to evaluate the direct plant contribution to the total soil organic carbon (SOC) stocks and revealed considerable miscanthus contribution all over the detected soil layers (1.98 ± 0.21 Mg C. ha−1 yr−1) after only 3 growing seasons. It is thus suggested that the C4 perennial miscanthus possess remarkable prospects for SOC sequestration and restoring degraded lands
    corecore