18 research outputs found

    Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis

    Get PDF
    Adipose tissue is recognized as an important organ with metabolic, regulatory, and plastic roles. Adipose tissue-derived stem cells (ASCs) with self-renewal properties localize in the stromal vascular fraction (SVF) being present in a vascular niche, thereby, contributing to local regulation of angiogenesis and vessel remodeling. In the past decades, ASCs have attracted much attention from biologists and bioengineers, particularly, because of their multilineage differentiation potential, strong proliferation, and migration abilities in vitro and high resistance to oxidative stress and senescence. Current data suggest that the SVF serves as an important source of endothelial progenitors, endothelial cells, and pericytes, thereby, contributing to vessel remodeling and growth. In addition, ASCs demonstrate intriguing metabolic and interlineage plasticity, which makes them good candidates for creating regenerative therapeutic protocols, in vitro tissue models and microphysiological systems, and tissue-on-chip devices for diagnostic and regeneration-supporting purposes. This review covers recent achievements in understanding the metabolic activity within the SVF niches (lactate and NAD+ metabolism), which is critical for maintaining the pool of ASCs, and discloses their pro-angiogenic potential, particularly, in the complex therapy of cardiovascular and cerebrovascular diseases

    Copy Number of Human Ribosomal Genes With Aging: Unchanged Mean, but Narrowed Range and Decreased Variance in Elderly Group

    No full text
    Introduction: The multi-copied genes coding for the human 18, 5.8, and 28S ribosomal RNA (rRNA) are located in five pairs of acrocentric chromosomes forming so-called rDNA. Human genome contains unmethylated, slightly methylated, and hypermethylated copies of rDNA. The major research question: What is the rDNA copy number (rDNA CN) and the content of hypermethylated rDNA as a function of age?Materials and Methods: We determined the rDNA CN in the blood leukocyte genomes of 651 subjects aged 17 to 91 years. The subjects were divided into two subgroups: β€œelderly” group (E-group, N = 126) – individuals over 72 years of age (the age of the population’s mean lifetime for Russia) and β€œnon-elderly” group (NE-group, N = 525). The hypermethylated rDNA content was determined in the 40 DNA samples from the each group. The change in rDNA during replicative cell senescence was studied for the cultured skin fibroblast lines of five subjects from NE-group. Non-radioactive quantitative dot- and blot-hybridization techniques (NQH) were applied.Results: In the subjects from the E-group the mean rDNA CN was the same, but the range of variation was narrower compared to the NE-group: a range of 272 to 541 copies in E-group vs. 200 to 711 copies in NE-group. Unlike NE-group, the E-group genomes contained almost no hypermethylated rDNA copies. A case study of cultured skin fibroblasts from five subjects has shown that during the replicative senescence the genome lost hypermethylated rDNA copies only.Conclusion: In the elderly group, the mean rDNA CN is the same, but the range of variation is narrower compared with the younger subjects. During replicative senescence, the human fibroblast genome loses hypermethylated copies of rDNA. Two hypotheses were put forward: (1) individuals with either very low or very high rDNA content in their genomes do not survive till the age of the population’s mean lifetime; and/or (2) during the aging, the human genome eliminates hypermethylated copies of rDNA

    Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit

    No full text
    Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a β€œplatform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections

    The Phosphonate Derivative of C60 Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells

    No full text
    Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7–14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ модСлирования Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΌΠΎΠ·Π³Π° ΠΈ гСматоэнцСфаличСского Π±Π°Ρ€ΡŒΠ΅Ρ€Π° in vitro

    Get PDF
    Neurovascular unit (NVU) is an ensemble of brain cells (cerebral endothelial cells, astrocytes, pericytes, neurons, and microglia), which regulates processes of transport through the blood-brain barrier (BBB) and controls local microcirculation and intercellular metabolic coupling. Dysfunction of NVU contributes to numerous types of central nervous system pathology. NVU pathophysiology has been extensively studied in various animal models of brain disorders, and there is growing evidence that modern approaches utilizing in vitro models are very promising for the assessment of intercellular communications within the NVU. Development of NVU‑on-chip or BBB‑on-chip as well as 3D NVU and brain tissue models suggests novel clues to understanding cell-to-cell interactions critical for brain functional activity, being therefore very important for translational studies, drug discovery, and development of novel analytical platforms. One of the mechanisms controlled by NVU activity is neurogenesis in highly specialized areas of brain (neurogenic niches, NNs), which are well-equipped for the maintenance of stem/progenitor cell pool and proliferation, differentiation, and migration of newly formed neuronal and glial cells. Specific properties of brain microvascular endothelial cells, particularly, high content of mitochondria, are important for establishment of vascular support in NVU and NNs. Metabolic activity of cells within NNs and NVU contributes to maintaining intercellular communications critical for the multicellular module integrity. We will discuss modern approaches to development of optimal microenvironment for in vitro BBB, NVU and NN models with the special focus on neuroengineering and bioprinting potentialsНСйроваскулярная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° (НВЕ) – это ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° (Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, астроциты, ΠΏΠ΅Ρ€ΠΈΡ†ΠΈΡ‚Ρ‹, Π½Π΅ΠΉΡ€ΠΎΠ½Ρ‹, микроглия), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ процСссы транспорта Ρ‡Π΅Ρ€Π΅Π· гСматоэнцСфаличСский Π±Π°Ρ€ΡŒΠ΅Ρ€ (Π“Π­Π‘), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΡŽ, ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ связь. Дисфункция НВЕ способствуСт возникновСнию ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы. ΠŸΠ°Ρ‚ΠΎΡ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ НВЕ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… модСлях Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Π’ настоящСС врСмя появляСтся всС большС ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π² Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ с использованиСм ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ in vitro Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивны для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈ НВЕ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° сосудисто-Π½Π΅Ρ€Π²Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† Π½Π° Ρ‡ΠΈΠΏΠ΅ ΠΈΠ»ΠΈ Π“Π­Π‘ Π½Π° Ρ‡ΠΈΠΏΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ 3D НВЕ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ пониманию ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… взаимодСйствий, критичСских для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности ΠΌΠΎΠ·Π³Π°, поэтому ΠΎΠ½ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ для трансляционных исслСдований, открытия лСкарств ΠΈ создания Π½ΠΎΠ²Ρ‹Ρ… аналитичСских ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ. Одним ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ контролируСтся Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ НВЕ, являСтся Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π΅Π· Π² узкоспСциализированных областях ΠΌΠΎΠ·Π³Π° (Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ниши, НН), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ слуТат источником для поддСрТания ΠΏΡƒΠ»Π° стволовых/ ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΈ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. БпСцифичСскиС свойства ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ микрососудов Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π² частности высокоС содСрТаниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, Π²Π°ΠΆΠ½Ρ‹ для создания сосудистой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΡ€ΠΈ НВЕ ΠΈ НН. ΠœΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Π½ΡƒΡ‚Ρ€ΠΈ НН ΠΈ НВЕ способствуСт ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, критичСски Π²Π°ΠΆΠ½Ρ‹Ρ… для цСлостности ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ микросрСды для in vitro ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π“Π­Π‘, НВЕ ΠΈ НН. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ пСрспСктивам Π½Π΅ΠΉΡ€ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΈ Π±ΠΈΠΎΠΏΠ΅Ρ‡Π°Ρ‚

    Une Γ’me de jeune fille [ : Gabrielle***] / Jean Vaudon,...

    No full text
    <p>A. Distribution of CpG-motifs within rDNA (transcribed region of human ribosomal repeat). The digits indicate the nucleotide order number, the vertical bar shows the motif location. Red color is used to mark region A and region B, that were analyzed for the presence of methylated CCGG sites. B. Determination of methylation index of three genes in DNA from cells treated with 20 ΞΌM DBP(1–4), 72 h (description is given in Methods).</p
    corecore