116 research outputs found

    WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts

    Get PDF
    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability

    Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actinregulatory gene WDR1

    Get PDF
    The importance of actin dynamics in the activation of the inflammasome is becoming increasingly apparent. IL-1β, which is activated by the inflammasome, is known to be central to the pathogenesis of many monogenic autoinflammatory diseases. However, evidence from an autoinflammatory murine model indicates that IL-18, the other cytokine triggered by inflammasome activity, is important in its own right. In this model, autoinflammation was caused by mutation in the actin regulatory gene WDR1 We report a homozygous missense mutation in WDR1 in two siblings causing periodic fevers with immunodeficiency and thrombocytopenia. We found impaired actin dynamics in patient immune cells. Patients had high serum levels of IL-18, without a corresponding increase in IL-18-binding protein or IL-1β, and their cells also secreted more IL-18 but not IL-1β in culture. We found increased caspase-1 cleavage within patient monocytes indicative of increased inflammasome activity. We transfected HEK293T cells with pyrin and wild-type and mutated WDR1 Mutant protein formed aggregates that appeared to accumulate pyrin; this could potentially precipitate inflammasome assembly. We have extended the findings from the mouse model to highlight the importance of WDR1 and actin regulation in the activation of the inflammasome, and in human autoinflammation

    Bias associated with delayed verification in test accuracy studies: accuracy of tests for endometrial hyperplasia may be much higher than we think!

    Get PDF
    BACKGROUND: To empirically evaluate bias in estimation of accuracy associated with delay in verification of diagnosis among studies evaluating tests for predicting endometrial hyperplasia. METHODS: Systematic reviews of all published research on accuracy of miniature endometrial biopsy and endometr ial ultrasonography for diagnosing endometrial hyperplasia identified 27 test accuracy studies (2,982 subjects). Of these, 16 had immediate histological verification of diagnosis while 11 had verification delayed > 24 hrs after testing. The effect of delay in verification of diagnosis on estimates of accuracy was evaluated using meta-regression with diagnostic odds ratio (dOR) as the accuracy measure. This analysis was adjusted for study quality and type of test (miniature endometrial biopsy or endometrial ultrasound). RESULTS: Compared to studies with immediate verification of diagnosis (dOR 67.2, 95% CI 21.7–208.8), those with delayed verification (dOR 16.2, 95% CI 8.6–30.5) underestimated the diagnostic accuracy by 74% (95% CI 7%–99%; P value = 0.048). CONCLUSION: Among studies of miniature endometrial biopsy and endometrial ultrasound, diagnostic accuracy is considerably underestimated if there is a delay in histological verification of diagnosis

    The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions

    Get PDF
    Vascular homoeostasis, development and disease critically depend on the regulation of endothelial cell-cell junctions. Here we uncover a new role for the F-BAR protein pacsin2 in the control of VE-cadherin-based endothelial adhesion. Pacsin2 concentrates at focal adherens junctions (FAJs) that are experiencing unbalanced actomyosin-based pulling. FAJs move in response to differences in local cytoskeletal geometry and pacsin2 is recruited consistently to the trailing end of fast-moving FAJs via a mechanism that requires an intact F-BAR domain. Photoconversion, photobleaching, immunofluorescence and super-resolution microscopy reveal polarized dynamics, and organization of junctional proteins between the front of FAJs and their trailing ends. Interestingly, pacsin2 recruitment inhibits internalization of the VE-cadherin complex from FAJ trailing ends and is important for endothelial monolayer integrity. Together, these findings reveal a novel junction protective mechanism during polarized trafficking of VE-cadherin, which supports barrier maintenance within dynamic endothelial tissue

    Stable or improved neurological manifestations during miglustat therapy in patients from the international disease registry for Niemann-Pick disease type C: an observational cohort study

    Get PDF
    Background: Niemann-Pick disease type C (NP-C) is a rare neurovisceral disease characterised by progressive neurological degeneration, where the rate of neurological disease progression varies depending on age at neurological onset. We report longitudinal data on functional disease progression and safety observations in patients in the international NPC Registry who received continuous treatment with miglustat. Methods: The NPC Registry is a prospective observational cohort of NP-C patients. Enrolled patients who received ≥1 year of continuous miglustat therapy (for ≥90 % of the observation period, with no single treatment interruption >28 days) were included in this analysis. Disability was measured using a scale rating the four domains, ambulation, manipulation, language and swallowing from 0 (normal) to 1 (worst). Neurological disease progression was analysed in all patients based on: 1) annual progression rates between enrolment and last follow up, and; 2) categorical analysis with patients categorised as 'improved/stable' if ≥3/4 domain scores were lower/unchanged, and as 'progressed' if <3 scores were lower/unchanged between enrolment and last follow-up visit. Results: In total, 283 patients were enrolled from 28 centers in 13 European countries, Canada and Australia between September 2009 and October 2013; 92 patients received continuous miglustat therapy. The mean (SD) miglustat exposure during the observation period (enrolment to last follow-up) was 2.0 (0.7) years. Among 84 evaluable patients, 9 (11 %) had early-infantile (<2 years), 27 (32 %) had late-infantile (2 to <6 years), 30 (36 %) had juvenile (6 to <15 years) and 18 (21 %) had adolescent/adult (≥15 years) onset of neurological manifestations. The mean (95%CI) composite disability score among all patients was 0.37 (0.32,0.42) at enrolment and 0.44 (0.38,0.50) at last follow-up visit, and the mean annual progression rate was 0.038 (0.018,0.059). Progression of composite disability scores appeared highest among patients with neurological onset during infancy or childhood and lowest in those with adolescent/adult-onset. Overall, 59/86 evaluable patients (69 %) were categorized as improved/stable and the proportion of improved/stable patients increased with age at neurological onset. Safety findings were consistent with previous data. Conclusions: Disability status was improved/stable in the majority of patients who received continuous miglustat therapy for an average period of 2 years

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease
    corecore