23 research outputs found

    Larch Cellulose Shows Significantly Depleted Hydrogen Isotope Values With Respect to Evergreen Conifers in Contrast to Oxygen and Carbon Isotopes

    Get PDF
    The analysis of the stable isotope of the tree-ring cellulose is an important tool for paleo climatic investigations. Long tree-ring chronologies consist predominantly of oaks and conifers in Europe, including larch trees (Larix decidua) and cembran pines (Pinus cembra) that form very long tree ring chronologies in the Alps and grow at the treeline, where tree growth is mainly determined by temperature variations. We analyzed δ13C, δ18O and δ2H isotopes in the cellulose extracted from tree-rings of wood samples collected at high altitude in the Swiss and Tyrol Alps, covering the whole Holocene period. We found that larch cellulose was remarkably more depleted in deuterium than that of cembran pine, with mean δ2H values of −113.4 ± 9.7‰ for larch and of −65.4 ± 11.3‰ for cembran pine. To verify if these depleted values were specific to larch or a property of the deciduous conifers, we extended the analysis to samples from various living conifer species collected at the Bern Botanical Garden. The results showed that not only the larch, but also all the samples of the deciduous larch family had a cellulose composition that was highly depleted in δ2H with regard to the other evergreen conifers including cembran pine, a difference that we attribute to a faster metabolism of the deciduous conifers. The δ18O values were not statistically different among the species, in agreement with the hypothesis that they are primary signals of the source water. While the δ13C values were slightly more depleted for larch than for cembran pine, likely due to metabolic differences of the two species. We conclude that the deciduous larch conifers have specific metabolic hydrogen fractionations and that the larch unique signature of δ2H is useful to recognize it from other conifers in subfossil wood samples collected for paleoclimatic studies. For climate information the absolute δ2H values of larch should be considered carefully and separate from other species

    Research Data Management Workshop at RCS18

    No full text
    The customised training «Research Data Management Workshop at RCS18» was held in the form of a workshop at the EPFL & ETHZ Summer School on Reproducibility in Computational Sciences 2018. The presentation contains information on the importance and basics of research data management, an overview of rules and regulations, data management planning, data sharing and long-term preservation of research data. Due to anonymization, the content of individual slides within this presentation might have been modified before publication. The customised training «Research Data Management Workshop at RCS18» was held in the form of a workshop at the EPFL & ETHZ Summer School on Reproducibility in Computational Sciences 2018. The presentation contains information on the importance and basics of research data management, an overview of rules and regulations, data management planning, data sharing and long-term preservation of research data. Due to anonymization, the content of individual slides within this presentation might have been modified before publication

    Research Data Management - Novel Requirements according to the SNSF

    No full text
    The customised training «Research Data Management – Novel Requirements according to the SNSF» was held in the form of a seminar. The presentation contains information on the SNSF Policy on Open Research Data, data management planning, the content of data management plans for the SNSF and an overview of ETH services for research data management. Due to anonymization, the content of individual slides within this presentation might have been modified before publication

    Alpine Holocene tree-ring dataset: age-related trends in the stable isotopes of cellulose show species-specific patterns

    Get PDF
    Stable isotopes in tree-ring cellulose are important tools for climatic reconstructions even though their interpretation could be challenging due to nonclimate signals, primarily those related to tree aging. Previous studies on the presence of tree-age-related trends during juvenile as well as adult growth phases in δD, δ18O, and δ13C time series yielded variable results that are not coherent among different plant species. We analyzed possible trends in the extracted cellulose of tree rings of 85 larch trees and 119 cembran pine trees, i.e., in samples of one deciduous and one evergreen conifer species collected at the tree line in the Alps, covering nearly the whole Holocene. The age trend analyses of all tree-ring variables were conducted on the basis of mean curves established by averaging the cambial-age-aligned tree series. For cambial ages over 100 years, our results prove the absence of any age-related effect in the δD, δ18O, and δ13C time series for both the evergreen and the deciduous conifer species, with the only exception being larch δD. However, for lower cambial ages, we found trends that differ for each isotope and species; i.e., mean δ13C values in larch do not vary with aging and can be used without detrending, whereas those in cembran pine show a juvenile effect, and the data should be detrended. Mean δ18O values present two distinct aging phases for both species, complicating detrending. Similarly, mean δD values in larch change in the first 50 years, whereas cembran pine changes between 50 and 100 years. Values for these two periods of cambial age for δD and δ18O should be used with caution for climatic reconstructions, ideally complemented by additional information regarding mechanisms for these trends

    Investigating Masking Effects of Age Trends on the Correlations among Tree Ring Proxies

    Get PDF
    Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW—stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends
    corecore