57 research outputs found

    Use of concentric hele-shaw cell for the study of displacement flow and interface tracking in primary cementing

    Get PDF
    We present our new designed concentric Hele-Shaw cell geometry with dynamic similarity to a real field wellbore annulus during primary cementing, and then, the results of displacement flow of Newtonian and yield-stress non-Newtonian fluids in it are described. The displacement stability and efficiency, the effect of back, front, and side boundaries on displacement, bypassing pockets of displaced yield-stress fluid in displacing fluid, and the behavior of pressure gradients in the cell are investigated. Applications of intermediate buoyant particles with different sizes and densities intermediate between those of successively pumped fluids for tracking the interface between the two displaced and displacing fluids are examined. The main idea is to upgrade this concentric Hele-Shaw cell geometry later to an eccentric one and check the possibility of tracking the interface between successive fluids pumped in the cell. Successful results help us track the interface between drilling fluid and spacer/cement during primary cementing in wells penetrating a CO2 storage reservoir and decreasing the risk of CO2 leakage from them.publishedVersio

    Portland cement hydration in the vicinity of electrically polarized conductive surfaces

    Get PDF
    Hardening of Portland cement-based materials in vicinity of electrically conductive surfaces, especially when the surfaces are electrically or galvanically polarized, can lead to both morphological and chemical changes in cement close to the surfaces due to combined electrochemical and electrophysical processes. Cement hydration products close to graphite and steel surfaces being positively (anode) and negatively (cathode) electrically polarized (direct current) were studied. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy were used to compare structure and atomic composition of cement hydration products on cathode, anode and a reference surface with no electrical polarization. The application of direct current (DC) potential in aqueous Portland G cement dispersion significantly affects cement hydration products close to cathode and anode and different products were found at the anode compared to the cathode surfaces. At the graphite anode, calcium sulphate crystals along with calcium hydroxide were most abundant, while the graphite cathode was mainly covered with calcium hydroxide. The calcium hydroxide carbonated upon exposure to air during drying. When steel electrodes where used, the most significant adsorption occurred at the anode, in contrast to graphite where the largest amount of the adsorbed material was found on the cathode. The observed differences were explained in view of electrophysical (electrophoresis, electroosmosis) and electrochemical (reduction and oxidation) processes occurring at electrode surfaces upon application of DC current. The knowledge gained in this work is important for engineering of electrically conductive cement nano-composites where typically the contact surface of an electrically conductive filler and a cementitious matrix is high.publishedVersio

    Manipulating cement-steel interface by means of electric field: Experiment and potential applications

    No full text
    Good shear bonding and hydraulic bonding between cement and steel play a crucial role in well integrity of oil and gas wells. In this experimental study, we investigate the effect that constant electric field may have on the bonding at cement-steel interfaces. Constant voltage (18 V) was applied between two stainless-steel electrodes immersed into a cement slurry. It was found that bonding was significantly improved at the positive electrode, while it was significantly worse at the negative electrode. The effect was due to the negatively-charged cement particles being attracted to the positive electrode. The effect may potentially be used for manipulation and control of casing-cement and reinforcement-concrete bonding strengths in oil & gas and construction industries, respectively. Side-effects that might reduce the applicability of this technology, are gas production at both electrodes (and especially at the negative one) and significant corrosion at the positive electrode due to electrochemical reactions at metal surfaces. Poor bonding at the negative electrode may potentially be used for cleaning of cement equipment, such as cement pumps, pipes, tanks, and mixers used on the rigs to perform well cementing jobs in oil & gas industry

    Cement Self-Healing as a Result of CO2 Leakage

    Get PDF
    Avoiding CO2 leakages from storage reservoirs is crucial to ensure safe and cost-efficient Carbon Capture and Storage (CCS). This can only be done if effort is made to maintain well integrity throughout the entire life-cycle of a well. Cement integrity is especially important, since the interfaces between cement and rock or casing have been identified as weak links in today's well construction. The present paper focuses on the healing of fractures in well cement when the material is exposed to a CO2-brine water-alternating-gas (WAG) flooding scheme. Specimen characterization using computed tomography combined with electron microscopy documents the self-healing procedure in detail for a composite cement-rock specimen subjected to a WAG flooding scheme. The study revealed volumetric data on self-healing of cement cracks and chemical changes in the specimen as well as in aqueous chemistry upon CO2 exposure. The measured aqueous chemistry suggests CO2-cement interaction to be less pronounced with time thereby together with the observed cement self-healing suggesting that the risk of compromising the safety of a storage site by cement-CO2 chemical reactions is minimal.publishedVersio

    Electrochemical enhancement and inhibition of calcium carbonate deposition

    Get PDF
    Calcium carbonate is by far the most widespread scaling material. Its deposition in pipes and flowlines has been a long-standing problem for many industries. Hence, a lot of research is devoted to scale inhibition. One of the calcium carbonate scale management methods relies on removal of calcium ions from scaling solution by electrochemically enhanced deposition. Application of potential between two electrodes may result in oxygen reduction and water electrolysis. Both processes change the local pH in close proximity to the electrodes. Solution close to the anode is becoming acidic while that close to the cathode alkaline. Solubility of calcium carbonate is pH dependent. The alkaline pH in the vicinity of the cathode promotes precipitation of calcium carbonate. On the other hand, the acidic environment near the anode prevents anode from scaling. In this paper we show how the cathodic and anodic processes, respectively, accelerate and prevent scale deposition on graphite electrode surfaces. The growth of calcium carbonate at different calcium ion concentrations and different voltage magnitudes applied were followed using X-ray computed tomography. The morphology of the deposited calcium carbonate was studied using the scanning electron microscopy. The polymorphic forms of calcium carbonate deposited at different voltage magnitudes were identified using X-ray powder diffraction. A strong correlation between the scaling rate, the average crystallite size and the voltage applied was observed.publishedVersio

    Experimental study of the use of tracing particles for interface tracking in primary cementing in an eccentric hele–shaw cell

    Get PDF
    We present the results of the displacement flows of different Newtonian and Herschel–Bulkley non-Newtonian fluids in a new-developed eccentric Hele–Shaw cell with dynamic similarly to real field wellbore annulus during primary cementing. The possibility of tracking the interface between the fluids using particles with intermediate or neutral buoyancy is studied. The behaviors and movements of particles with different sizes and densities against the primary vertical flow and strong secondary azimuthal flow in the eccentric Hele–Shaw cell are investigated. The effects of fluid rheology and pumping flow rate on the efficiency of displacement and tracing particles are examined. Moreover, the behavior of pressure gradients in the cell is described and analyzed. Successful results of tracing the interface using particles give us this opportunity to carry out a primary cementing with high quality for the cases that the risk of leakage is high, e.g., primary cementing in wells penetrating a CO2 storage reservoir

    Synchrotron Study of Cement Hydration: Towards Computed Tomography Analysis of Interfacial Transition Zone

    No full text
    The quality of bonding between cement and steel in wells is controlled by the interfacial transition zone (ITZ). Micro-computed X-ray tomography (μ-CT) imaging with synchrotron radiation was used in the current paper to study the development of ITZ at the early stages of hydration. The experiments have revealed that the width of the transition zone is around 20 μm, which is consistent with earlier reports. Unlike previously published studies, where the ITZ width was estimated with the naked eye, the ITZ in our study was identified using a quantitative procedure that made use of particle size analysis. This analysis revealed that the ITZ is depleted of large cement particles from the very beginning of hydration

    Use of concentric hele-shaw cell for the study of displacement flow and interface tracking in primary cementing

    No full text
    We present our new designed concentric Hele-Shaw cell geometry with dynamic similarity to a real field wellbore annulus during primary cementing, and then, the results of displacement flow of Newtonian and yield-stress non-Newtonian fluids in it are described. The displacement stability and efficiency, the effect of back, front, and side boundaries on displacement, bypassing pockets of displaced yield-stress fluid in displacing fluid, and the behavior of pressure gradients in the cell are investigated. Applications of intermediate buoyant particles with different sizes and densities intermediate between those of successively pumped fluids for tracking the interface between the two displaced and displacing fluids are examined. The main idea is to upgrade this concentric Hele-Shaw cell geometry later to an eccentric one and check the possibility of tracking the interface between successive fluids pumped in the cell. Successful results help us track the interface between drilling fluid and spacer/cement during primary cementing in wells penetrating a CO2 storage reservoir and decreasing the risk of CO2 leakage from them

    Experimental study of the use of tracing particles for interface tracking in primary cementing in an eccentric hele–shaw cell

    Get PDF
    We present the results of the displacement flows of different Newtonian and Herschel–Bulkley non-Newtonian fluids in a new-developed eccentric Hele–Shaw cell with dynamic similarly to real field wellbore annulus during primary cementing. The possibility of tracking the interface between the fluids using particles with intermediate or neutral buoyancy is studied. The behaviors and movements of particles with different sizes and densities against the primary vertical flow and strong secondary azimuthal flow in the eccentric Hele–Shaw cell are investigated. The effects of fluid rheology and pumping flow rate on the efficiency of displacement and tracing particles are examined. Moreover, the behavior of pressure gradients in the cell is described and analyzed. Successful results of tracing the interface using particles give us this opportunity to carry out a primary cementing with high quality for the cases that the risk of leakage is high, e.g., primary cementing in wells penetrating a CO2 storage reservoir.publishedVersio
    corecore