61 research outputs found

    Fungal Communities Vectored by Ips sexdentatus in Declining Pinus sylvestris in Ukraine: Focus on Occurrence and Pathogenicity of Ophiostomatoid Species

    Get PDF
    Drought-induced stress and attacks by bark beetle Ips sexdentatus currently result in a massive dieback of Pinus sylvestris in eastern Ukraine. Limited and fragmented knowledge is available on fungi vectored by the beetle and their roles in tree dieback. The aim was to investigate the fungal community vectored by I. sexdentatus and to test the pathogenicity of potentially aggressive species to P. sylvestris. Analysis of the fungal community was accomplished by combining different methods using insect, plant, and fungal material. The material consisted of 576 beetles and 96 infested wood samples collected from six sample plots within a 300 km radius in eastern Ukraine and subjected to fungal isolations and (beetles only) direct sequencing of ITS rDNA. Pathogenicity tests were undertaken by artificially inoculating three-to-four-year-old pine saplings with fungi. For the vector test, pine logs were exposed to pre-inoculated beetles. In all, 56 fungal taxa were detected, 8 exclusively by isolation, and 13 exclusively by direct sequencing. Those included nine ophiostomatoids, five of which are newly reported as I. sexdentatus associates. Two ophiostomatoid fungi, which exhibited the highest pathogenicity, causing 100% dieback and mortality, represented genera Graphium and Leptographium. Exposure of logs to beetles resulted in ophiostomatoid infections. In conclusion, the study revealed numerous I. sexdentatus-vectored fungi, several of which include aggressive tree pathogens

    Evaluation of pea genotype PI180693 partial resistance towards aphanomyces root rot in commercial pea breeding

    Get PDF
    The cultivation of vining pea (Pisum sativum) faces a major constraint with root rot diseases, caused by a complex of soil-borne pathogens including the oomycetes Aphanomyces euteiches and Phytophtora pisi. Disease resistant commercial varieties are lacking but the landrace PI180693 is used as a source of partial resistance in ongoing pea breeding programs. In this study, the level of resistance and their interaction with A. euteiches virulence levels of six new back-crossed pea breeding lines, deriving from the cross between the susceptible commercial cultivar Linnea and PI180693, were evaluated for their resistance towards aphanomyces root rot in growth chamber and green house tests. Resistance towards mixed infections by A. euteiches and P. pisi and commercial production traits were evaluated in field trials. In growth chamber trials, pathogen virulence levels had a significant effect on plant resistance, as resistance was more consistent against A. euteiches strains exhibiting high or intermediate virulence compared with lowly virulent strains. In fact, line Z1701-1 showed to be significantly more resistant than both parents when inoculated with a lowly virulent strain. In two separate field trials in 2020, all six breeding lines performed equally well as the resistant parent PI180693 at sites only containing A. euteiches, as there were no differences in disease index. In mixed infections, PI180693 exhibited significantly lower disease index scores than Linnea. However, breeding lines displayed higher disease index scores compared with PI180693, indicating higher susceptibility towards P. pisi. Data on seedling emergence from the same field trials suggested that PI180693 was particularly sensitive towards seed decay/damping off disease caused by P. pisi. Furthermore, the breeding lines performed equally well as Linnea in traits important for green pea production, again emphasizing the commercial potential. In summary, we show that the resistance from PI180693 interacts with virulence levels of the pathogen A. euteiches and is less effective towards root rot caused by P. pisi. Our results show the potential use of combining PI180693 partial resistance against aphanomyces root rot with commercially favorable breeding traits in commercial breeding programs

    Identifying Fraxinus excelsior tolerant to ash dieback: Visual field monitoring versus a molecular marker

    Get PDF
    Ash dieback (ADB) caused by the pathogen Hymenoscyphus fraxineus is the cause of massive mortality of Fraxinus spp. in Europe. The aim of this work was to check for the presence of the molecular marker for ADB tolerance in mapped healthy-looking F. excelsior trees, and to compare its occurrence in trees exhibiting severe ADB symptoms. Monitoring of 135 healthy-looking F. excelsior on the island of Gotland, Sweden, showed that after 3-4 years 99.3% of these trees had 0%-10% crown damage, thus remaining in a similar health condition as when first mapped. After 5-6 years, 94.7% of these trees had 0%-10% crown damage. Molecular analysis of leaf tissues from 40 of those showed the presence of the molecular marker in 34 (85.0%) trees, while it was absent in 6 (15.0%) trees. Analysis of leaf tissues from 40 severely ADB-diseased trees showed the presence of the molecular marker in 17 (42.5%) trees, but its absence in 23 (57.5%) trees (p < .0001). The results demonstrated that monitoring of healthy-looking F. excelsior is a simple and straightforward approach for the selection of presumably ADB-tolerant ash for future breeding. The cDNA-based molecular marker revealed moderate capacity on its own to discriminate between presumably ADB-tolerant and susceptible F. excelsior genotypes

    Host genotype interacts with aerial spore communities and influences the needle mycobiome of Norway spruce

    Get PDF
    The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high-throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants

    Host genotype interacts with aerial spore communities and influences the needle mycobiome of Norway spruce

    Get PDF
    The factors shaping the composition of the tree mycobiome are still under investigation. We tested the effects of host genotype, site, host phenotypic traits, and air fungal spore communities on the assembly of the fungi inhabiting Norway spruce needles. We used Norway spruce clones and spore traps within the collection sites and characterized both needle and air mycobiome communities by high-throughput sequencing of the ITS2 region. The composition of the needle mycobiome differed between Norway spruce clones, and clones with high genetic similarity had a more similar mycobiome. The needle mycobiome also varied across sites and was associated with the composition of the local air mycobiome and climate. Phenotypic traits such as diameter at breast height or crown health influenced the needle mycobiome to a lesser extent than host genotype and air mycobiome. Altogether, our results suggest that the needle mycobiome is mainly driven by the host genotype in combination with the composition of the local air spore communities. Our work highlights the role of host intraspecific variation in shaping the mycobiome of trees and provides new insights on the ecological processes structuring fungal communities inhabiting woody plants.This research was supported by the Swedish research council for Environment, Agricultural Sciences and Spatial Planning, FORMAS, project 2016-00798. M.E. and H.D.C were also supported by Formas project 2017-00402. J.O. was partially supported by the 'Ramon y Cajal' fellowship RYC-2015-17459. The authors would like to thank the owners of the seed orchards, Svenska skogsplantor AB and Sodra skogsagarna AB, for allowing us to sample the trees and assisting with the air mycobiome sampling. The authors also thank Antonio Rizzi, Rena Gadjieva, Maria Jonsson, and Katarina Ihrmark for their assistance with the laboratory and field work. The authors would like to acknowledge the support of the National Genomics Infrastructure (NGI)/Uppsala, Genome Center and UPPMAX for assisting us in massive parallel sequencing and computational infrastructure. Work performed at NGI/Uppsala Genome Center was funded by RFI/VR and Science for Life Laboratory, Sweden

    Genetic diversity of the pea root pathogen Aphanomyces euteiches in Europe

    Get PDF
    The oomycete pathogen Aphanomyces euteiches causes root rot in various legume species. In this study we focused on A. euteiches causing root rot in pea (Pisum sativum), thereby being responsible for severe yield losses in pea production. We aimed to understand the genetic diversity of A. euteiches in Europe, covering a north-to-south gradient spanning from Sweden, Norway and Finland to the UK, France and Italy. A collection of 85 European A. euteiches strains was obtained, all isolated from infected pea roots from commercial vining pea cultivation fields. The strains were genotyped using 22 simple-sequence repeat markers. Multilocus genotypes were compiled and the genetic diversity between individual strains and population structure between countries was analysed. The population comprising strains from Italy was genetically different and did not share ancestry with any other population. Also, strains originating from Finland and the eastern parts of Sweden were found to be significantly different from the other populations, while strains from the rest of Europe were more closely related. A subset of 10 A. euteiches strains from four countries was further phenotyped on two susceptible pea genotypes, as well as on one genotype with partial resistance towards A. euteiches. All strains were pathogenic on all pea genotypes, but with varying levels of disease severity. No correlation between the genetic relatedness of strains and virulence levels was found. In summary, our study identified three genetically distinct groups of A. euteiches in Europe along a north-to-south gradient, indicating local pathogen differentiation

    Comparative analyses of the Hymenoscyphus fraxineus and Hymenoscyphus albidus genomes reveals potentially adaptive differences in secondary metabolite and transposable element repertoires

    Get PDF
    Background The dieback epidemic decimating common ash (Fraxinus excelsior) in Europe is caused by the invasive fungus Hymenoscyphus fraxineus. In this study we analyzed the genomes of H. fraxineus and H. albidus, its native but, now essentially displaced, non-pathogenic sister species, and compared them with several other members of Helotiales. The focus of the analyses was to identify signals in the genome that may explain the rapid establishment of H. fraxineus and displacement of H. albidus. Results The genomes of H. fraxineus and H. albidus showed a high level of synteny and identity. The assembly of H. fraxineus is 13 Mb longer than that of H. albidus', most of this difference can be attributed to higher dispersed repeat content (i.e. transposable elements [TEs]) in H. fraxineus. In general, TE families in H. fraxineus showed more signals of repeat-induced point mutations (RIP) than in H. albidus, especially in Long-terminal repeat (LTR)/Copia and LTR/Gypsy elements. Comparing gene family expansions and 1:1 orthologs, relatively few genes show signs of positive selection between species. However, several of those did appeared to be associated with secondary metabolite genes families, including gene families containing two of the genes in the H. fraxineus-specific, hymenosetin biosynthetic gene cluster (BGC). Conclusion The genomes of H. fraxineus and H. albidus show a high degree of synteny, and are rich in both TEs and BGCs, but the genomic signatures also indicated that H. albidus may be less well equipped to adapt and maintain its ecological niche in a rapidly changing environment
    corecore