51 research outputs found

    Dengue virus capsid interacts with DDX3X-a potential mechanism for suppression of antiviral functions in dengue infection

    Get PDF
    Dengue virus is a pathogen of global concern and has a huge impact on public health system in low- and middle-income countries. The capsid protein of dengue virus is least conserved among related flavivirus and there is very limited information on the role of cytosolic proteins that interact with dengue virus capsid. We identified DEAD (Asp-Glu-Ala-Asp) Box Helicase 3, an X-Linked (DDX3X), cytosolic ATP-dependent RNA helicase as a dengue virus capsid-interacting protein. We show that the N-terminal region of capsid is important for interaction with DDX3X, while the N-terminal domain of DDX3X seems to be involved in interaction with dengue capsid. DDX3X was down-regulated in dengue virus infected cells at later stages of infection. Our results show that DDX3X is an antiviral protein as suppression of DDX3X expression by siRNA led to an increase in viral titers and overexpression of DDX3X led to inhibition of viral replication. Knock-down of DDX3X did not affect induction of type I interferon response upon infection suggesting that the effect of DDX3X knock-down is independent of the interferon-dependent pathways that DDX3X modulates under normal conditions. Thus, our study identifies DDX3X as a dengue virus capsid interacting protein and indicates a potential link between the antiviral functions of DDX3X and dengue capsid at later stages of dengue infection

    Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant

    No full text
    Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants’ response to biotic/abiotic stresses. Typically, 20–30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here

    Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant

    No full text
    Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants’ response to biotic/abiotic stresses. Typically, 20–30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here

    Molecular characterization of bacterial population in the forest soil of Kashmir, India

    No full text
    The bacterial diversity in the forest soil of Kashmir, India was investigated by 16S rDNA-dependent molecular phylogeny. Small subunit rRNA (16S rDNA)from forest soil metagenome were amplified by polymerase chain reaction (PCR) using primers specific to the domain bacteria. 30 unique phylotypes were obtained by PCR based RFLP of 16S rRNA genes using endonucleases Hae 111 and Msp 1, which were most suitable to score the genetic diversity. The use of 16S rRNA analysis allowed identification of several bacterial populations in the soil belonging to the following phyla: Firmicutes (33.3%),Bacteroidetes (13.3%), Proteobacterium (6.6%), Planctomycete(3.3%), and Deferribacteraceae (3.3%) in addition to the others that were not classified, beyond Archaea domain, However, 36.6% of the retrieved bacterial sequences could not be grouped with any phylum/lineage.The large amount of unclassified clone sequence could imply that novel groups of bacteria were present in the forest soil

    Abiotic Stress Tolerance in Plants: Brassinosteroids Navigate Competently

    No full text
    Brassinosteroid hormones (BRs) multitask to smoothly regulate a broad spectrum of vital physiological processes in plants, such as cell division, cell expansion, differentiation, seed germination, xylem differentiation, reproductive development and light responses (photomorphogenesis and skotomorphogenesis). Their importance is inferred when visible abnormalities arise in plant phenotypes due to suboptimal or supraoptimal hormone levels. This group of steroidal hormones are major growth regulators, having pleiotropic effects and conferring abiotic stress resistance to plants. Numerous abiotic stresses are the cause of significant loss in agricultural yield globally. However, plants are well equipped with efficient stress combat machinery. Scavenging reactive oxygen species (ROS) is a unique mechanism to combat the deleterious effects of abiotic stresses. In light of numerous reports in the past two decades, the complex BR signaling under different stress conditions (drought, salinity, extreme temperatures and heavy metals/metalloids) that drastically hinders the normal metabolism of plants is gradually being untangled and revealed. Thus, crop improvement has substantial potential by tailoring either the brassinosteroid signaling, biosynthesis pathway or perception. This review aims to explore and dissect the actual mission of BRs in signaling cascades and summarize their positive role with respect to abiotic stress tolerance

    Chromatin-Based Transcriptional Reprogramming in Plants under Abiotic Stresses

    No full text
    Plants’ stress response machinery is characterized by an intricate network of signaling cascades that receive and transmit environmental cues and ultimately trigger transcriptional reprogramming. The family of epigenetic regulators that are the key players in the stress-induced signaling cascade comprise of chromatin remodelers, histone modifiers, DNA modifiers and regulatory non-coding RNAs. Changes in the histone modification and DNA methylation lead to major alterations in the expression level and pattern of stress-responsive genes to adjust with abiotic stress conditions namely heat, cold, drought and salinity. The spotlight of this review falls primarily on the chromatin restructuring under severe abiotic stresses, crosstalk between epigenetic regulators along with a brief discussion on stress priming in plants

    Phylogenetic Characterization of Archaea in Saltpan Sediments

    No full text
    A study was undertaken to investigate the presence of archaeal diversity in saltpan sediments of Goa, India by 16S rDNA-dependent molecular phylogeny. Small subunit rRNA (16S rDNA) from saltpan sediment metagenome were amplified by polymerase chain reaction(PCR) using primers specific to the domain archaea. 10 unique phylotypes were obtained by PCR based RFLP of 16S rRNA genes using endonuclease Msp 1, which was most suitable to score the genetic diversity. These phylotypes spanned a wide range within the domain archaea including both crenarchaeota and euryarcheaota. None of the retrieved crenarchaeota sequences could be grouped with previously cultured crenarchaeota however; two sequences were related with haloarchaea. Most of the sequences determined were closely related to the sequences that had been previously obtained from metagenome of a variety of marine environments. The phylogenetic study of a site investigated for the first time revealed the presence of low archaeal population but showed yet unclassified species, may specially adapted to the salt pan sediment of Goa

    Histochemical localization of GUS activity (blue coloration) directed by <i>Cauliflower mosaic virus</i> 35S, <i>Cotton leaf curl Burewala virus</i> Rep and <i>Cotton leaf curl Burewala virus</i> CP promoters in transformed <i>Nicotiana tabacum</i> leaves.

    No full text
    <p>(A) Whole leaves, (B) Transverse section through the midrib and leaf lamina showing the presence of GUS signal in mesophyll cells, trichomes and vascular tissues (phloem and xylem parenchyma cells). (C) Transverse section through the petiole. (C: Cortex; E: Epidermis; M: Mesophyll; P: Phloem; X: Xylem).</p

    The nucleotide sequence of the large intergenic region of <i>Cotton leaf curl Burewala virus</i> determined in this study.

    No full text
    <p>Putative <i>cis</i>-acting elements including TATA box, GC-rich sequence, stem-loop motif, E box, conserved late element (CLE), AAAG motif are indicated. The putative translation start sites ATG and CAT are indicated in bold, and the transcription start site is indicated in bold italics.</p
    • …
    corecore