4 research outputs found

    Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (Ziziphus mauritiana)

    No full text
    Indian jujube or ber (Ziziphus mauritiana Lam.) is a deciduous fruit tree typically cultivated in several semi-arid areas of Asia because of its adaptability to yield-limiting conditions. The present study aimed to assess the effect of four pruning times (i.e., the fourth week of March, second week of April, fourth week of April, and second week of May) and four treatments using stress-mitigating plant bio-regulators (thiourea at 500 ppm and 1000 ppm; salicylic acid at 100 ppm and 150 ppm) as a means to improve both fruit yield and quality post-harvest. To this end, a full factorial experiment lasting two growing seasons was carried out under field conditions in the representative semi-arid region of Rajasthan, the state with the largest production in India. We assessed the vegetative growth of the trees, the fruit size and yield, and some quality parameters (soluble content, acidity, ascorbic acid, and total sugars) as well as the main post-harvest traits (fruit weight loss and spoilage). Overall, pruning during the second week of April had the greatest positive influence on most of the variables studied. For instance, it induced the highest vegetative vigor, allowing the maintenance of relatively higher chlorophyll and relative water content in the leaves. The fruit parameters also responded most positively to the second week of April pruning, a treatment that, compared to the others, induced a higher diameter; a higher amount of TSS (19.6 °Brix), ascorbic acid (86.5 mg/100 g), and total sugar (10.4%); and a better post-harvest shelf-life. Among the plant bio-regulators, the application of thiourea at 1000 ppm had the highest positive influence on the growth parameters, yield, quality, and reduction in spoilage post-harvest. The differences between the doses of PBRs were limited

    Effects of Time of Pruning and Plant Bio-Regulators on the Growth, Yield, Fruit Quality, and Post-Harvest Losses of Ber (<i>Ziziphus mauritiana</i>)

    No full text
    Indian jujube or ber (Ziziphus mauritiana Lam.) is a deciduous fruit tree typically cultivated in several semi-arid areas of Asia because of its adaptability to yield-limiting conditions. The present study aimed to assess the effect of four pruning times (i.e., the fourth week of March, second week of April, fourth week of April, and second week of May) and four treatments using stress-mitigating plant bio-regulators (thiourea at 500 ppm and 1000 ppm; salicylic acid at 100 ppm and 150 ppm) as a means to improve both fruit yield and quality post-harvest. To this end, a full factorial experiment lasting two growing seasons was carried out under field conditions in the representative semi-arid region of Rajasthan, the state with the largest production in India. We assessed the vegetative growth of the trees, the fruit size and yield, and some quality parameters (soluble content, acidity, ascorbic acid, and total sugars) as well as the main post-harvest traits (fruit weight loss and spoilage). Overall, pruning during the second week of April had the greatest positive influence on most of the variables studied. For instance, it induced the highest vegetative vigor, allowing the maintenance of relatively higher chlorophyll and relative water content in the leaves. The fruit parameters also responded most positively to the second week of April pruning, a treatment that, compared to the others, induced a higher diameter; a higher amount of TSS (19.6 °Brix), ascorbic acid (86.5 mg/100 g), and total sugar (10.4%); and a better post-harvest shelf-life. Among the plant bio-regulators, the application of thiourea at 1000 ppm had the highest positive influence on the growth parameters, yield, quality, and reduction in spoilage post-harvest. The differences between the doses of PBRs were limited

    Not Available

    No full text
    Not AvailableIndian jujube or ber (Ziziphus mauritiana Lam.) is a deciduous fruit tree typically cultivated in several semi-arid areas of Asia because of its adaptability to yield-limiting conditions. The present study aimed to assess the effect of four pruning times (i.e., the fourth week of March, second week of April, fourth week of April, and second week of May) and four treatments using stress-mitigating plant bio-regulators (thiourea at 500 ppm and 1000 ppm; salicylic acid at 100 ppm and 150 ppm) as a means to improve both fruit yield and quality post-harvest. To this end, a full factorial experiment lasting two growing seasons was carried out under field conditions in the representative semi-arid region of Rajasthan, the state with the largest production in India. We assessed the vegetative growth of the trees, the fruit size and yield, and some quality parameters (soluble content, acidity, ascorbic acid, and total sugars) as well as the main post-harvest traits (fruit weight loss and spoilage). Overall, pruning during the second week of April had the greatest positive influence on most of the variables studied. For instance, it induced the highest vegetative vigor, allowing the maintenance of relatively higher chlorophyll and relative water content in the leaves. The fruit parameters also responded most positively to the second week of April pruning, a treatment that, compared to the others, induced a higher diameter; a higher amount of TSS (19.6 Brix), ascorbic acid (86.5 mg/100 g), and total sugar (10.4%); and a better post-harvest shelf-life. Among the plant bio-regulators, the application of thiourea at 1000 ppm had the highest positive influence on the growth parameters, yield, quality, and reduction in spoilage post-harvest. The differences between the doses of PBRs were limited.Not Availabl

    Tuberculosis: integrated studies for a complex disease 2050

    No full text
    Tuberculosis (TB) has been a disease for centuries with various challenges [1]. Like other places where challenges and opportunities come together, TB challenges were the inspiration for the scientific community to mobilize different groups for the purpose of interest. For example, with the emergence of drug resistance, there has been a huge volume of research on the discovery of new medicines and drug delivery methods and the repurposing of old drugs [2, 3]. Moreover, to enhance the capacity to detect TB cases, studies have sought diagnostics and biomarkers, with much hope recently expressed in the direction of point-of-care tests [4]. Despite all such efforts as being highlighted in 50 Chapters of this volume, we are still writing about TB and thinking about how to fight this old disease–implying that the problem of TB might be complex, so calling the need for an integrated science to deal with multiple dimensions in a simultaneous and effective manner. We are not the first one; there have been proposed integrated platform for TB research, integrated prevention services, integrated models for drug screening, integrated imaging protocol, integrated understanding of the disease pathogenesis, integrated control models, integrated mapping of the genome of the pathogen, etc. [5–12], to name some. These integrated jobs date back decades ago. So, a question arises: why is there a disease named TB yet? It might be due to the fact that this integration has happened to a scale that is not global, and so TB remains to be a problem, especially in resource-limited settings. Hope Tuberculosis: Integrated Studies for a Complex Disease helps to globalize the integrated science of TB.info:eu-repo/semantics/publishedVersio
    corecore