3 research outputs found

    Recent Trends, Opportunities and Challenges in 3D Printing Technology for Personalize Medicine

    Get PDF
    The scrutiny of medical devices industry as well as pharmaceutical industry for its application in health care industry on different platform is captured the 3D printing technique.  3D printing technology withstand for a very long duration only because of the approval of medical devices, 3D printed tablets and also with the advent of USFDA guideline on technical consideration. This technology is specific to devices utilizing preservative manufacturing. Many thoughts are triggered by 3D printing this technology and for successful delivery of intended product which is necessarily take into a consideration. In this review paper expectation limitations of some regulatory companies, Advantages, disadvantages, what type problems are arises while establishing this setups for drug product production, method, application, and manufacturing risk are represented. It also gives information about the current status of 3D printing technology in research and development of drug products.  For the fabrication of novel solid dosage form a number of 3D printing technology have been developed. This review is mainly focused on describing different technology used for the application of 3D printing in pharmaceutical industry.  Keywords: - 3D printing technology, recent trend, Opportunities, personalize medicine, challenges, future

    A Review on Life Cycle Management Approach on Asset Qualification

    Get PDF
    All equipment’s used in the production of products shall be properly Validated, Qualified and Calibrated to demonstrate that it is suitable for its intended purpose. Qualification is an important aspect of the pharmaceutical quality system. When the equipment is properly qualified, verified and maintained, there is the possibility of Consistent performance of the equipment. A well designed qualification program saves valuable time and cost. Qualification is called a cyclic process because it is a never ending process. Appropriate documentation of the qualification program is very important as lack of the documented evidence does not give any meaning to qualification (Not documented it means not done).  The current programs and procedures of equipment qualification used within any pharmaceutical and bioscience industry are based on ‘regulatory requirements’, ‘voluntary standards’, ‘vendor practices’, and ‘industry practices’. The output is considerable variation in the way any pharmaceutical and biotechnological companies approach for the laboratory equipment. The lifecycle management approach of equipment qualification covers entire life cycle for the specification, design, manufacturing, installation, commissioning, qualification (4Qs Model DQ, IQ, OQ, PQ), operation & maintenance of equipment in a risk based life cycle management approach. The goal of any regulated pharmaceutical and bioscience company is to provide reliable and valid data suitable for its intended purpose. Main goal of equipment qualification is to form the basis for written procedures for production and process control which are designed to assure that the drug products have the SISPQ (Safety, Identity, Strength, Purity and Quality) Keywords: Validation, Calibration, Life cycle management approach, Qualification (4Qs Model- DQ, IQ, OQ & PQ), SISPQ (Safety, Identity, Strength, Purity and Quality

    Invasive Species Control and Resolution of Wildlife Damage Conflicts: A Framework for Chemical and Genetically Based Management Methods

    Get PDF
    Vertebrate wildlife damage management relates to developing and employing methods to mitigate against damage caused by wildlife in the areas of food production, property damage, and animal or human health and safety. Of the many management tools available, chemical methods (e.g., toxicants) draw the most attention owing to issues related to environmental burden, species specificity, and humaneness. Research and development focusing on RNA interference and gene drives may be able to address the technical aspects of performance goals. However, there remain many questions about regulation, environmental risk, and societal acceptance for these emerging biological technologies. Here we focus on the development and use of these biological technologies for use in vertebrate pest management and conservation (e.g., management of wildlife diseases). We then discuss the regulatory framework and challenges these technologies present and conclude with a discussion on factors to consider for enabling these technologies for pest management and conservation applications under a commercially applied framework
    corecore