312 research outputs found

    Incremental Entity Resolution from Linked Documents

    Full text link
    In many government applications we often find that information about entities, such as persons, are available in disparate data sources such as passports, driving licences, bank accounts, and income tax records. Similar scenarios are commonplace in large enterprises having multiple customer, supplier, or partner databases. Each data source maintains different aspects of an entity, and resolving entities based on these attributes is a well-studied problem. However, in many cases documents in one source reference those in others; e.g., a person may provide his driving-licence number while applying for a passport, or vice-versa. These links define relationships between documents of the same entity (as opposed to inter-entity relationships, which are also often used for resolution). In this paper we describe an algorithm to cluster documents that are highly likely to belong to the same entity by exploiting inter-document references in addition to attribute similarity. Our technique uses a combination of iterative graph-traversal, locality-sensitive hashing, iterative match-merge, and graph-clustering to discover unique entities based on a document corpus. A unique feature of our technique is that new sets of documents can be added incrementally while having to re-resolve only a small subset of a previously resolved entity-document collection. We present performance and quality results on two data-sets: a real-world database of companies and a large synthetically generated `population' database. We also demonstrate benefit of using inter-document references for clustering in the form of enhanced recall of documents for resolution.Comment: 15 pages, 8 figures, patented wor

    Predicting Remaining Useful Life using Time Series Embeddings based on Recurrent Neural Networks

    Get PDF
    We consider the problem of estimating the remaining useful life (RUL) of a system or a machine from sensor data. Many approaches for RUL estimation based on sensor data make assumptions about how machines degrade. Additionally, sensor data from machines is noisy and often suffers from missing values in many practical settings. We propose Embed-RUL: a novel approach for RUL estimation from sensor data that does not rely on any degradation-trend assumptions, is robust to noise, and handles missing values. Embed-RUL utilizes a sequence-to-sequence model based on Recurrent Neural Networks (RNNs) to generate embeddings for multivariate time series subsequences. The embeddings for normal and degraded machines tend to be different, and are therefore found to be useful for RUL estimation. We show that the embeddings capture the overall pattern in the time series while filtering out the noise, so that the embeddings of two machines with similar operational behavior are close to each other, even when their sensor readings have significant and varying levels of noise content. We perform experiments on publicly available turbofan engine dataset and a proprietary real-world dataset, and demonstrate that Embed-RUL outperforms the previously reported state-of-the-art on several metrics.Comment: Presented at 2nd ML for PHM Workshop at SIGKDD 2017, Halifax, Canad

    A case series on drug induced hyponatremia: uncommon adverse effect of commonly used drugs

    Get PDF
    Older patients suffering from depression and psychosis have markedly increased since last decade. So, has the use of antidepressants and antipsychotics. The prevalence of hyponatremia due to these drugs is common in general as well as psychiatric practice. It may also lead to life threatening morbidity and mortality. Loss of renal function, polypharmacy, dementia and other conditions of advanced age can either exacerbate the severity of hyponatremia or mask its onset. In this case series, total four cases were reported of hyponatremia and drugs causing it were escitalopram, quetiapine, tianeptine and oxcarbazepine. Due to polypharmacy, a chance of hyponatremia was more in these patients. Patients received infusion of hypertonic saline with salt added diet to treat hyponatremia. Symptoms of hyponatremia were improved after the treatment. In all four cases, WHO and Naranjo’s causality assessment revealed ‘possible’ causal relationship with the prescribed drug. Prescribers should be aware of such adverse effect due to these drugs
    • …
    corecore