98 research outputs found

    The nuclear envelope can control gene expression and cell cycle progression via miRNA regulation

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2010 Landes Bioscience.The nuclear envelope can regulate gene expression through its interaction with chromatin and by the sequestration of specific transcription factors. In this study, we show that such regulation can be achieved via microRNA regulation. We identify a set of miRNAs that are dysregulated in the absence of a fully functional nuclear lamina. We then focus on miRNA-31 and experimentally confirm its targets. The target set identified is significantly enriched in genes involved in controlling progress through the cell cycle such as Cdkn2a. Normalizing miRNA-31 levels, either using a specific inhibitor or by restoration of the nuclear lamina, also normalizes cell cycle distribution and cell proliferation rates. We show that the 3’UTR of p16Ink4a/p19Arf has a functional miRNA-31 binding site which contributes to the observed regulation of cell cycle progression. Our findings are the first demonstration that the nuclear envelope can control gene expression by regulating specific miRNA levels, and that miRNA-31 is involved in the regulation of cell proliferation and progress through the cell cycle at least in part by regulating the levels of p16Ink4a/p19Arf.The EPA Trust and the MRC

    Lamin b1 polymorphism influences morphology of the nuclear envelope, cell cycle progression, and risk of neural tube defects in mice.

    Get PDF
    Neural tube defects (NTDs), including spina bifida and anencephaly, are common birth defects whose complex multigenic causation has hampered efforts to delineate their molecular basis. The effect of putative modifier genes in determining NTD susceptibility may be investigated in mouse models, particularly those that display partial penetrance such as curly tail, a strain in which NTDs result from a hypomorphic allele of the grainyhead-like-3 gene. Through proteomic analysis, we found that the curly tail genetic background harbours a polymorphic variant of lamin B1, lacking one of a series of nine glutamic acid residues. Lamins are intermediate filament proteins of the nuclear lamina with multiple functions that influence nuclear structure, cell cycle properties, and transcriptional regulation. Fluorescence loss in photobleaching showed that the variant lamin B1 exhibited reduced stability in the nuclear lamina. Genetic analysis demonstrated that the variant also affects neural tube closure: the frequency of spina bifida and anencephaly was reduced three-fold when wild-type lamin B1 was bred into the curly tail strain background. Cultured fibroblasts expressing variant lamin B1 show significantly increased nuclear dysmorphology and diminished proliferative capacity, as well as premature senescence, associated with reduced expression of cyclins and Smc2, and increased expression of p16. The cellular basis of spinal NTDs in curly tail embryos involves a proliferation defect localised to the hindgut epithelium, and S-phase progression was diminished in the hindgut of embryos expressing variant lamin B1. These observations indicate a mechanistic link between altered lamin B1 function, exacerbation of the Grhl3-mediated cell proliferation defect, and enhanced susceptibility to NTDs. We conclude that lamin B1 is a modifier gene of major effect for NTDs resulting from loss of Grhl3 function, a role that is likely mediated via the key function of lamin B1 in maintaining integrity of the nuclear envelope and ensuring normal cell cycle progression

    Failure to ubiquitinate c-Met Leads to Hyperactivation of mTOR Signaling in a Mouse Model of Autosomal Dominant Polycystic Kidney Disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that is caused by mutations at two loci, polycystin 1 (PKD1) and polycystin 2 (PKD2). It is characterized by the formation of multiple cysts in the kidneys that can lead to chronic renal failure. Previous studies have suggested a role for hyperactivation of mammalian target of rapamycin (mTOR) in cystogenesis, but the etiology of mTOR hyperactivation has not been fully elucidated. In this report we have shown that mTOR is hyperactivated. in Pkd1-null mouse cells due to failure of the HGF receptor c-Met to be properly ubiquitinated and subsequently degraded after stimulation by HGF. In Pkd1-null cells, Casitas B-lineage lymphoma (c-Cb1), an E3-ubiquitin ligase for c-Met, was sequestered in the Golgi apparatus with alpha(3)beta(1) integrin, resulting in the inability to ubiquitinate c-Met. Treatment of mouse Pkd1-null cystic kidneys in organ culture with a c-Met pharmacological inhibitor resulted in inhibition of mTOR activity and blocked cystogenesis in this mouse model of ADPKD. We therefore suggest that blockade of c-Met is a potential novel therapeutic approach to the treatment of ADPKD

    Is LMNB1 a susceptibility gene for neural tube defects in humans?

    Get PDF
    BACKGROUND: Lamins are intermediate filament proteins that form a major component of the nuclear lamina, a protein complex at the surface of the inner nuclear membrane. Numerous clinically diverse conditions, termed laminopathies, have been found to result from mutation of LMNA. In contrast, coding or loss of function mutations of LMNB1, encoding lamin B1, have not been identified in human disease. In mice, polymorphism in Lmnb1 has been shown to modify risk of neural tube defects (NTDs), malformations of the central nervous system that result from incomplete closure of the neural folds. METHODS: Mutation analysis by DNA sequencing was performed on all exons of LMNB1 in 239 samples from patients with NTDs from the United Kingdom, Sweden, and United States. Possible functional effects of missense variants were analyzed by bioinformatics prediction and fluorescence in photobleaching. RESULTS: In NTD patients, we identified two unique missense variants that were predicted to disrupt protein structure/function and represent putative contributory mutations. Fluorescence loss in photobleaching analysis showed that the A436T variant compromised stability of lamin B1 interaction within the lamina. CONCLUSION: The genetic basis of human NTDs appears highly heterogenous with possible involvement of multiple predisposing genes. We hypothesize that rare variants of LMNB1 may contribute to susceptibility to NTDs. Birth Defects Research (Part A), 2013. © 2013 Wiley Periodicals, Inc

    Evidence-Based Guideline on Laparoscopy in Pregnancy: Commissioned by the British Society for Gynaecological Endoscopy (BSGE) Endorsed by the Royal College of Obstetricians & Gynaecologists (RCOG).

    Get PDF
    Laparoscopy is widely utilised to diagnose and treat acute and chronic, gynaecological and general surgical conditions. It has only been in recent years that laparoscopy has become an acceptable surgical alternative to open surgery in pregnancy. To date there is little clinical guidance pertaining to laparoscopic surgery in pregnancy. This is why the BSGE commissioned this guideline. MEDLINE, EMBASE, CINAHL and the Cochrane library were searched up to February 2017 and evidence was collated and graded following the NICE-approved process. The conditions included in this guideline are laparoscopic management of acute appendicitis, acute gall bladder disease and symptomatic benign adnexal tumours in pregnancy. The intended audience for this guideline is obstetricians and gynaecologists in secondary and tertiary care, general surgeons and anaesthetists. However, only laparoscopists who have adequate laparoscopic skills and who perform complex laparoscopic surgery regularly should undertake laparoscopy in pregnant women, since much of the evidence stems from specialised centres

    Lamin B1 regulates somatic mutations and progression of B-cell malignancies

    Get PDF
    Somatic hypermutation (SHM) is a pivotal process in adaptive immunity that occurs in the germinal centre and allows B cells to change their primary DNA sequence and diversify their antigen receptors. Here, we report that genome binding of Lamin B1, a component of the nuclear envelope involved in epigenetic chromatin regulation, is reduced during B-cell activation and formation of lymphoid germinal centres. Chromatin immunoprecipitation-Seq analysis showed that kappa and heavy variable immunoglobulin domains were released from the Lamin B1 suppressive environment when SHM was induced in B cells. RNA interference-mediated reduction of Lamin B1 resulted in spontaneous SHM as well as kappa-light chain aberrant surface expression. Finally, Lamin B1 expression level correlated with progression-free and overall survival in chronic lymphocytic leukaemia, and was strongly involved in the transformation of follicular lymphoma. In summary, here we report that Lamin B1 is a negative epigenetic regulator of SHM in normal B-cells and a 'mutational gatekeeper', suppressing the aberrant mutations that drive lymphoid malignancy

    Ferritin level : a predictor of severity and mortality in hospitalized COVID-19 patients

    Get PDF
    Introduction: This study aims to investigate in-hоsрitаl mоrtаlity in severe асute resрirаtоry syndrоme соrоnаvirus 2 раtients strаtified by serum ferritin levels. Methods: Patients were stratified based on ferritin levels (ferritin levels ≤ 1000 or >1000). Results: Approximately 89% (118) of the patients with ferritin levels > 1000 had pneumonia, and 51% (67) had hypertension. Fever (97, 73.5%) and shortness of breath (80, 61%) were two major symptoms among the patients in this group. Logistic regression analysis indicated that ferritin level (odds ratio [OR] = 0.36, 95% confidence interval [CI] = 0.21–0.62; p 1000. Conclusion: In this study, higher levels of serum ferritin were found to be an independent predictor of in-hоsрitаl mоrtаlity

    Dynamic Regulation of Oct1 during Mitosis by Phosphorylation and Ubiquitination

    Get PDF
    Transcription factor Oct1 regulates multiple cellular processes. It is known to be phosphorylated during the cell cycle and by stress, however the upstream kinases and downstream consequences are not well understood. One of these modified forms, phosphorylated at S335, lacks the ability to bind DNA. Other modification states besides phosphorylation have not been described.We show that Oct1 is phosphorylated at S335 in the Oct1 DNA binding domain during M-phase by the NIMA-related kinase Nek6. Phospho-Oct1 is also ubiquitinated. Phosphorylation excludes Oct1 from mitotic chromatin. Instead, Oct1(pS335) concentrates at centrosomes, mitotic spindle poles, kinetochores and the midbody. Oct1 siRNA knockdown diminishes the signal at these locations. Both Oct1 ablation and overexpression result in abnormal mitoses. S335 is important for the overexpression phenotype, implicating this residue in mitotic regulation. Oct1 depletion causes defects in spindle morphogenesis in Xenopus egg extracts, establishing a mitosis-specific function of Oct1. Oct1 colocalizes with lamin B1 at the spindle poles and midbody. At the midbody, both proteins are mutually required to correctly localize the other. We show that phospho-Oct1 is modified late in mitosis by non-canonical K11-linked polyubiquitin chains. Ubiquitination requires the anaphase-promoting complex, and we further show that the anaphase-promoting complex large subunit APC1 and Oct1(pS335) interact.These findings reveal mechanistic coupling between Oct1 phosphorylation and ubquitination during mitotic progression, and a role for Oct1 in mitosis

    The E1A-Associated p400 Protein Modulates Cell Fate Decisions by the Regulation of ROS Homeostasis

    Get PDF
    The p400 E1A-associated protein, which mediates H2A.Z incorporation at specific promoters, plays a major role in cell fate decisions: it promotes cell cycle progression and inhibits induction of apoptosis or senescence. Here, we show that p400 expression is required for the correct control of ROS metabolism. Depletion of p400 indeed increases intracellular ROS levels and causes the appearance of DNA damage, indicating that p400 maintains oxidative stress below a threshold at which DNA damages occur. Suppression of the DNA damage response using a siRNA against ATM inhibits the effects of p400 on cell cycle progression, apoptosis, or senescence, demonstrating the importance of ATM–dependent DDR pathways in cell fates control by p400. Finally, we show that these effects of p400 are dependent on direct transcriptional regulation of specific promoters and may also involve a positive feedback loop between oxidative stress and DNA breaks since we found that persistent DNA breaks are sufficient to increase ROS levels. Altogether, our results uncover an unexpected link between p400 and ROS metabolism and allow deciphering the molecular mechanisms largely responsible for cell proliferation control by p400

    The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome

    Get PDF
    Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions
    corecore