46 research outputs found

    Optical properties of transition-metal-doped GaN and ZnO for spintronics applications

    Full text link
    University of Technology, Sydney. Faculty of Science.Spin-based devices have the potential to take modern electronics and optoelectronics to the next level. So-called ‘spintronics’ exploit both the charge and the spin of an electron for data processing, transport and storage. A significant step towards the realisation of such devices would be to achieve room temperature ferromagnetic semiconductors. Theoretical works predict the possibility of room temperature ferromagnetism in the wide bandgap semiconductors GaN and ZnO doped with transition metals. The present models of spin-coupling in such dilute magnetic semiconductors require input in form of quantitative information on electronic states that arise from the introduction of transition metal ions into the host lattice. This work focuses on the detailed experimental investigation of such states in GaN and ZnO doped with different transition metals. A large array of Fe, Mn and Ni doped GaN and ZnO samples with different doping levels and n-type and p-type co-doping were intensively studied by a wide range of experimental techniques. The investigation of Fe doped GaP, GaAs and InP provided valuable insights into the transient shallow acceptor state constituted by a hole bound to Fe2+. The most significant results are summarised in the following: A comprehensive literature review is presented on the Fe centre in III-V and II- VI semiconductors. Experimental and theoretical data that have been obtained over a few decades were reviewed thoroughly unveiling common phenomena that can be generalised to other TMs. The positions of established Fe3+/2+ and Fe2+/1+ levels were summarised allowing for predictions on the positions of further charge transfer levels based on the internal reference rule. The Fe3+/4+ level has not been identified unambiguously in any of the studied materials. Detailed term schemes of the observed charge states in tetrahedral and trigonal crystal field symmetry are presented including fine structure, isotope effects and a dynamic Jahn-Teller effect. By means of cathodoluminescence experiments Ni and Fe doping of HVPE-grown GaN was found to promote the formation of inhomogeneous regions with increased donor density and enhanced luminescence efficiency. In these regions richly structured cathodoluminescence patterns are observed at the surface. By means of optical studies on high quality Fe doped GaN samples the electronic structure of Fe3+ and Fe2+ was established in great detail. The effects of spin-orbit interaction, of the axial distortion of the crystal held in hexagonal GaN and of the Jahn-Teller coupling were successfully investigated. Both the Fe3+ centre and the Fe2+ centre were found to be stabilised against a dynamic Jahn Teller effect by the trigonal symmetry of the wurtzite lattice. A bound state with a binding energy of 50±10 meV was identified as a hydrogenic state consisting of a hole localised at an Fe2+ centre. This [Fe2,h] state represents a transient shallow acceptor state. It could be described by effective-mass-theory revealing an effective Bohr radius of 1.5 nm which may enable a long-range spin interaction via overlapping wavefunctions at relatively low Fe doping. The position of the Fe3+/2+ acceptor level could be narrowed down to 2.863±0.005 eV above the valence band maximum. Acting as a deep acceptor Fe incorporation was shown to quench the intrinsic yellow luminescence of GaN by lowering the Fermi level and passivating native donor states. Implications concerning the internal reference rule are discussed. A deep understanding of the effective-mass-like state [Fe2+,h] could be obtained by temperature and stress dependent measurements on Fe doped GaP, GaAs and InP. Besides the ground state, the hole was observed in several excited hydrogenic states each involving different Fe2+ fine structure states. Particularly for the hydrogenic ground state, a weak exchange interaction was found between the hole Fe2+ core states. Due to finite p-d hybridisation of Fe orbitals with the valence band, a weaker binding energy was observed for the ground state than predicted by effective mass theory. Finally, with regard to the Fe3+ ground state, 6A1(S), in GaP and InP, the hyperfine structure level T8 was found to be above the T7 level. ZnO:Fe samples were prepared by Fe coating ZnO crystals, which were grown from the gas phase, and subsequent annealing under varying atmospheres. In these samples the internal Fe2+(5E—5T2) transition was observed for the first time at 395.7 meV by means of Fourier transform infrared transmission spectroscopy. This value is in good agreement with the general trend in III-V and II-VI materials that the (5E—5T2) energy rises with an increasing degree of ionicity and decreasing lattice constant. No axial symmetry was found for the Fe2+ centre which is unusual for wurtzite ZnO. Possible reasons are discussed taking into account a strong Jahn- Teller effect, the non-constant c/a-ratio of ZnO and a high concentration of defects. Moreover, Fe-defect complexes and local vibrational modes could be identified. A large array of GaN samples with varying Mn concentrations and n-type and p-type co-doping allowed for a systematic charge state tuning by shifting the Fermi level providing access to the oxidation states Mn2+, Mn3+ and Mn4+. The respective electronic structures were investigated by means of optical and magnetic techniques. The Mn3+ centre and Mn4+ centre showed clear effects of degradation of crystal quality as a result of Mn, Si and Mg doping. A strong tendency was demonstrated for the formation of Mn-Mg complexes. A photoluminescence structure found around 1 eV in Mg co-doped GaN:Mn samples was proven to originate from Mn4+ involved in such complexes. A resonant Stokes process by secondary excitation and stimulated hole transfer was established in these Mn-Mg complexes. The Mn3+/4+ donor and Mn3+/2+ acceptor levels were found 1.15 eV and 1.65 eV above the VB maximum, respectively, compensating n-type and p-type doping. As a consequence, there is no reasonable chance to achieve high carrier concentrations in GaN:Mn, a precondition for free-carrier-mediated spin-coupling. The results presented in this thesis contribute to the general understanding of transition-metal-related electronic states in III-V and II-VI semiconductors, particularly in GaN and ZnO. These new insights are valuable contributions to a targeted design of dilute magnetic semiconductors that will help to, one day, realise next- generation spintronic devices

    Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Full text link
    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5?1017, 1?1018, 1?1019, and 2?1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal 4T1(G)?6A1(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectivel

    Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 107, 024311 (2010) and may be found at https://doi.org/10.1063/1.3275889.We study the existence of Li-related shallow and deep acceptor levels in Li-doped ZnO nanocrystals using electron paramagnetic resonance (EPR) and photoluminescence (PL) spectroscopy. ZnO nanocrystals with adjustable Li concentrations between 0% and 12% have been prepared using organometallic precursors and show a significant lowering of the Fermi energy upon doping. The deep Li acceptor with an acceptor energy of 800 meV could be identified in both EPR and PL measurements and is responsible for the yellow luminescence at 2.2 eV. Additionally, a shallow acceptor state at 150 meV above the valence band maximum is made responsible for the observed donor-acceptor pair and free electron-acceptor transitions at 3.235 and 3.301 eV, possibly stemming from the formation of Li-related defect complexes acting as acceptors.DFG, 43659573, SFB 787: Halbleiter - Nanophotonik: Materialien, Modelle, Bauelement

    Fast scatterometric measurement of periodic surface structures in plasma-etching processes

    Get PDF
    To satisfy the continuous demand of ever smaller feature sizes, plasma etching technologies in microelectronics processing enable the fabrication of device structures with dimensions in the nanometer range. In a typical plasma etching system a plasma phase of a selected etching gas is activated, thereby generating highly energetic and reactive gas species which ultimately etch the substrate surface. Such dry etching processes are highly complex and require careful adjustment of many process parameters to meet the high technology requirements on the structure geometry. In this context, real-time access of the structure's dimensions during the actual plasma process would be of great benefit by providing full dimension control and film integrity in real-time. In this paper, we evaluate the feasibility of reconstructing the etched dimensions with nanometer precision from reflectivity spectra of the etched surface, which are measured in real-time throughout the entire etch process. We develop and test a novel and fast reconstruction algorithm, using experimental reflection spectra taken about every second during the etch process of a periodic 2D model structure etched into a silicon substrate. Unfortunately, the numerical simulation of the reflectivity by Maxwell solvers is time consuming since it requires separate time-harmonic computations for each wavelength of the spectrum. To reduce the computing time, we propose that a library of spectra should be generated before the etching process. Each spectrum should correspond to a vector of geometry parameters s.t. the vector components scan the possible range of parameter values for the geometrical dimensions. We demonstrate that by replacing the numerically simulated spectra in the reconstruction algorithm by spectra interpolated from the library, it is possible to compute the geometry parameters in times less than a second. Finally, to also reduce memory size and computing time for the library, we reduce the scanning of the parameter values to a sparse grid

    Fe-Centers in GaN as Candidates for Spintronics Applications

    Get PDF
    ABSTRACT The potential use of Fe doped GaN for spintronics applications requires a complete understanding of the electronic structure of Fe in all of its charge states. To address these issues, a set of 400 µm thick freestanding HVPE grown GaN:Fe crystals with different Fe-concentration levels ranging from 5×1

    Optical properties of Mn-doped GaN

    Full text link
    Molecular beam epitaxy-grown GaN with different Mn concentrations (5-23×1019 cm-3) and codoped with Si were investigated by cathodoluminescence (CL) spectroscopy and optical transmission measurements. In the GaN:Mn, an intense absorption peak at 1.414 +/- 0.002 eV was observed. This peak was attributed to an internal 5T 2→ 5E transition of the deep neutral Mn3+ state since its intensity scaled with the Mn3+ concentration. The CL measurements showed that Mn-doping concentrations around 1020 cm -3 had three effects on the emission spectrum: (i) the donor bound exciton at 3.460 eV was reduced by more than one order of magnitude, (ii) the donor-acceptor-pair band at 3.27 eV was completely quenched and (iii) the yellow luminescence centered at 2.2 eV was the strongly decreased. The latter two effects were attributed to a reduced concentration of VGa. In the infrared spectral range, three broad, Mn-doping related CL emission bands centered at 1.01 ± 0.02 eV, 1.09 ± 0.02 eV and 1.25 ± 0.03 eV were observed. These bands might be related to deep donor complexes, which are generated as a result of the heavy Mn-doping, rather than internal transitions at the Mn atom

    Experimental probing of exchange interactions between localized spins in the dilute magnetic insulator (Ga,Mn)N

    Full text link
    The sign, magnitude, and range of the exchange couplings between pairs of Mn ions is determined for (Ga,Mn)N and (Ga,Mn)N:Si with x < 3%. The samples have been grown by metalorganic vapor phase epitaxy and characterized by secondary-ion mass spectroscopy; high-resolution transmission electron microscopy with capabilities allowing for chemical analysis, including the annular dark-field mode and electron energy loss spectroscopy; high-resolution and synchrotron x-ray diffraction; synchrotron extended x-ray absorption fine-structure; synchrotron x-ray absorption near-edge structure; infra-red optics and electron spin resonance. The results of high resolution magnetic measurements and their quantitative interpretation have allowed to verify a series of ab initio predictions on the possibility of ferromagnetism in dilute magnetic insulators and to demonstrate that the interaction changes from ferromagnetic to antiferromagnetic when the charge state of the Mn ions is reduced from 3+ to 2+.Comment: 12 pages, 14 figures; This version contains the detailed characterization of the crystal structure as well as of the Mn distribution and charge stat
    corecore