13 research outputs found

    The Medicinal Chemistry of 5-HT6 Receptor Ligands with a Focus on Arylsulfonyltryptamine Analogs

    Get PDF
    Arylsulfonyl analogs of aminopyrimidines (e.g. Ro 04-6790; 2), aminopyridines (e.g. Ro 63-0563; 3), 1-phenylpiperazines (e.g. SB-271046; 4), and tryptamines (e.g. MS-245; 5) were described as the first examples of selective 5-HT6 receptor antagonists only ten years ago. Today, hundreds of compounds of seemingly diverse structure have been reported. The early antagonists featured an arylsulfonyl group leading to the widespread assumption that an arylsulfonyl moiety might be critical for binding and antagonist action. With respect to the arylsulfonyltryptamines, it seems that neither the “arylsulfonyl” nor the “tryptamine” portion of these compounds is essential for binding or for antagonist action, and some such derivatives even display agonist action. The present review describes many of the currently available 5-HT6 receptor ligands and, unlike prior reviews, provides a narrative of the thinking (where possible) that led to their design, synthesis, and evaluation. The arylsulfonyltryptamines are also used as the structural basis of attempts to relate various structure-types to one another to afford a better understanding of the overall structural requirements for 5-HT6 receptor binding

    Merging cultures and disciplines to create a drug discovery ecosystem at Virginia commonwealth university: Medicinal chemistry, structural biology, molecular and behavioral pharmacology and computational chemistry

    No full text
    The Department of Medicinal Chemistry, together with the Institute for Structural Biology, Drug Discovery and Development, at Virginia Commonwealth University (VCU) has evolved, organically with quite a bit of bootstrapping, into a unique drug discovery ecosystem in response to the environment and culture of the university and the wider research enterprise. Each faculty member that joined the department and/or institute added a layer of expertise, technology and most importantly, innovation, that fertilized numerous collaborations within the University and with outside partners. Despite moderate institutional support with respect to a typical drug discovery enterprise, the VCU drug discovery ecosystem has built and maintained an impressive array of facilities and instrumentation for drug synthesis, drug characterization, biomolecular structural analysis and biophysical analysis, and pharmacological studies. Altogether, this ecosystem has had major impacts on numerous therapeutic areas, such as neurology, psychiatry, drugs of abuse, cancer, sickle cell disease, coagulopathy, inflammation, aging disorders and others. Novel tools and strategies for drug discovery, design and development have been developed at VCU in the last five decades; e.g., fundamental rational structure-activity relationship (SAR)-based drug design, structure-based drug design, orthosteric and allosteric drug design, design of multi-functional agents towards polypharmacy outcomes, principles on designing glycosaminoglycans as drugs, and computational tools and algorithms for quantitative SAR (QSAR) and understanding the roles of water and the hydrophobic effect
    corecore