1,317 research outputs found

    Electrochemical Process for Diazinon Removal from Aqueous Media: Design of Experiments, Optimization, and DLLME-GC-FID Method for Diazinon Determination

    Get PDF
    In the present study, electrochemical process was studied via removal of diazinon (O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate) as an insecticide/ acaricide organic case study. Influences of three operational parameters including initial ferrous ion concentration, initial hydrogen peroxide concentration, and initial diazinon concentration were measured and optimized in diazinon removal process. Response surface methodology (RSM) was used to design the experiments. The experimental data collected in a laboratory-scaled batch reactor equipped with four graphite bar electrodes as cathode and an aluminum sheet electrode as an anode. Quantitative analysis of diazinon was done with gas chromatography equipped with flame photometric detector. Disperse liquid–liquid microextraction was used prior to gas chromatography in order to extraction and preconcentration of diazinon from aqueous media to extraction phase. Acetone and chlorobenzene were used as disperser and extraction solvent, respectively. Maximum diazinon removal efficiency of 87% (0.85mg mass removal) in C0 of 2mg/L and 80% (120mg mass removal) in C0 of 300mg/L was achieved under different experimental conditions. The obtained experimental data were used for model building by RSM approach. Finally, optimization process was carried out using RSM algorithm. © 2015, King Fahd University of Petroleum & Minerals

    Theory of the inverse spin galvanic effect in quantum wells

    Full text link
    The understanding of the fundamentals of spin and charge densities and currents interconversion by spin-orbit coupling can enable efficient applications beyond the possibilities offered by conventional electronics. For this purpose we consider various forms of the frequency-dependent inverse spin galvanic effect (ISGE) in semiconductor quantum wells and epilayers taking into account the cubic in the electron momentum spin-orbit coupling in the Rashba and Dresselhaus forms, concentrating on the current-induced spin polarization (CISP). We find that including the cubic terms qualitatively explains recent findings of the CISP in InGaAs epilayers being the strongest if the internal spin-orbit coupling field is the smallest and vice versa (Norman et . 2014, Luengo et al. 2017), in contrast to the common understanding. Our results provide a promising framework for the control of spin transport in future spintronics devices.Comment: 13 pages, 12 figure

    Study of embryotoxicity of mentha piperita l. during organogenesis in balb/c mice

    Get PDF
    Mentha piperita (Labiatae), commonly known as peppermint is a native Iranian herb which is used in folk medicine for various purposes. This study was carried out to reveal the teratogenic effect of Mentha piperita on mice fetuses. In this experimental study, pregnant Balb/c mice divided to four groups. Case group received 600 (treatment I) and 1200 (treatment II) mg/kg/day the hydroalcoholic extract of Mentha piperita during 6-15 of gestational days and one control group received normal saline during GD6-GD15 by gavages and other control group did not receive any matter during 6-15 of gestational days. Mice sacrificed at GD18 and embryos were collected. Macroscopic observation was done by stereomicroscope. 20 fetuses of each group were stained by Alizarin red-S and Alcian blue staining method. The Mean weight of fetuses decreased in treatment groups rather than control (P<0.05) but CRL there was no significant difference between treatments and controls groups. In the treatment I (600 mg/kg/day) and treatment II (1200 mg/kg/day), normal saline and control group, no gross congenital malformations were observed in fetuses. Treated fetuses also had no delayed bone ossification as determined by Alizarin red-S and Alcian blue staining method. This study showed that the hydroalcoholic extract of Mentha piperita (600 and 1200 mg/ kg/day) has no teratogenic effect in mice fetuses if used continuously during embryonic period

    Computer simulations of ions in radio-frequency traps

    Get PDF
    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime

    Design of a fiber-optic transmitter for microwave analog transmission with high phase stability

    Get PDF
    The principal considerations in the design of fiber-optic transmitters for highly phase-stable radio frequency and microwave analog transmission are discussed. Criteria for a fiber-optic transmitter design with improved amplitude and phase-noise performance are developed through consideration of factors affecting the phase noise, including low-frequency laser-bias supply noise, the magnitude and proximity of external reflections into the laser, and temperature excursions of the laser-transmitter package

    Structure of bottle-brush brushes under good solvent conditions. A molecular dynamics study

    Full text link
    We report a simulation study for bottle-brush polymers grafted on a rigid backbone. Using a standard coarse-grained bead-spring model extensive molecular dynamics simulations for such macromolecules under good solvent conditions are performed. We consider a broad range of parameters and present numerical results for the monomer density profile, density of the untethered ends of the grafted flexible backbones and the correlation function describing the range that neighboring grafted bottle-brushes are affected by the presence of the others due to the excluded volume interactions. The end beads of the flexible backbones of the grafted bottle-brushes do not access the region close to the rigid backbone due to the presence of the side chains of the grafted bottle-brush polymers, which stretch further the chains in the radial directions. Although a number of different correlation lengths exist as a result of the complex structure of these macromolecules, their properties can be tuned with high accuracy in good solvents. Moreover, qualitative differences with "typical" bottle-brushes are discussed. Our results provide a first approach to characterizing such complex macromolecules with a standard bead spring model.Comment: To appear in Journal of Physics Condensed Matter (2011

    Curved Gratings as Plasmonic Lenses for Linearly Polarised Light

    Full text link
    The ability of curved gratings as sectors of concentric circular gratings to couple linearly polarized light into focused surface plasmons is investigated by theory, simulation and experiment. Curved gratings, as sectors of concentric circular gratings with four different sector angles, are etched into a 30-nm thick gold layer on a glass coverslip and used to couple linearly-polarised free space light at nm into surface plasmons. The experimental and simulation results show that increasing the sector angle of the curved gratings decreases the lateral spotsize of the excited surface plasmons, resulting in focussing of surface plasmons which is analogous to the behaviour of classical optical lenses. We also show that two faced curved gratings, with their groove radius mismatched by half of the plasmon wavelength (asymmetric configuration), can couple linearly-polarised light into a single focal spot of concentrated surface plasmons with smaller depth of focus and higher intensity in comparison to single-sided curved gratings. The major advantage of these structures is the coupling of linearly-polarised light into focused surface plasmons with access to and control of the plasmon focal spot, which facilitates potential applications in sensing, detection and nonlinear plasmonics.Comment: 15 pages and 12 figure

    Effect of Microstructural Refinement on Tensile Properties of AZ80 Magnesium Alloy via Ca Addition and Extrusion Process

    Get PDF
    AbstractThe microstructure and tensile properties of AZ80+X%Ca (X=0, 0.1, 0.5) magnesium alloy have investigated after applying extrusion process at 280°C and 340°C. Optical and scanning electron micrographs parallel to extrusion direction at 280°C showed dynamically recrystallized grains. There were also initial grains elongated in extrusion direction in the AZ80+X%Ca alloy. Finer microstructures were observed by increasing calcium content due to the formation of some precipitates during grain growth. EDS analysis determined the newly formed precipitates as Al2Ca. The grain size was reduced from 90μm to 9μm by extrusion process in the sample with 0.5% Ca. At higher extrusion temperature (340°C), similar microstructure was observed, except that the grain size was increased and there was no initial grains left in the structure anymore. From tensile testing, ultimate tensile strength (UTS) value was increased from 304MPa to 329MPa in extruded AZ80+0.5%Ca alloy at 280°C
    • …
    corecore