1,393 research outputs found

    Spinor Dynamics-Driven Formation of a Dual-Beam Atom Laser

    Get PDF
    We demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of an F=1 spinor Bose-Einstein condensate whose Zeeman sublevel populations have been coherently evolved through spin dynamics. The condensate is formed through all-optical means using a single-beam running-wave dipole trap. We create a condensate in the field-insensitive mF=0m_F=0 state, and drive coherent spin-mixing evolution through adiabatic compression of the initially weak trap. Such dual beams, number-correlated through the angular momentum-conserving reaction 2m0m+1+m12m_0\leftrightharpoons m_{+1}+m_{-1}, have been proposed as tools to explore entanglement and squeezing in Bose-Einstein condensates, and have potential use in precision phase measurements.Comment: 4 pages, 4 figure

    Application of predictive degree day model for field development of sandfly vectors of visceral leishmaniasis in northwest of Iran

    Get PDF
    Background & objectives: Temperature plays a significant role in insect’s development where arise in temperature, accelerates the insect’s metabolic rates, increases egg production and makesblood feeding more frequent. It also shortens the time period required for the development ofpathogens within insects. Visceral leishmaniasis (VL) is one of the most important vector-bornediseases transmitted by different sandfly species. In this study, a phenological model was used toestimate the number of generations, peak activity and temporal variability of sandflies in the mainVL foci in northwest Iran.Methods: Development requirements of different life stages of a Phlebotomus papatasi laboratorycolony were measured and were subjected to the formula for calculation of accumulated degree day(ADD) for field sandflies using the online soft (UC IPM), using horizontal cut-off method andsingle triangle model. Sandflies population dynamics was monitored in the field during the seasonalactivity in the region and its association with the ADD was tested using SAS software.Results: Populations of sandflies accommodated well with the amount of accumulated degree days(ADD) in the region. During the seasonal activity, a total of 639 ADD were produced which wasenough to support one complete life cycle and growth of the next generation up to late larvalinstar. Larvae of the second generation hibernate through winter and the first adult populationappears in the mid to late June of the next year when they receive at least 182 ADD from thebeginning of the spring. The highest population density of sandflies was observed in early August,followed by a rapid decrease in early September, with the adult population disappearing completelyin late September. This is the first degree day model related to sandflies in the most important VLfoci of Iran.Interpretation & conclusion: Further studies in various regions with variable climate arerecommended in order to better estimate and understand the development time, population dynamicsand activities of the vectors which in turn could be used in proper implementation of effectivevector control programmes

    A Critical Review on Improving the Fatigue Life and Corrosion Properties of Magnesium Alloys via the Technique of Adding Different Elements

    Get PDF
    Magnesium is the eighth-most abundant element in the world and its alloys have a widespread application in various industries such as electronic and transport (i.e., air, land, and sea) engineering, due to their significant mechanical properties, excellent machinability, high strength to weight ratios, and low cost. Although monolithic Mg metal is known as the lightest industrial metal (magnesium density is 30% less than the density of the aluminum, and this unique property increases the attractiveness of its usage in the transportation industry), one of the significant limitations of magnesium, which affects on its applications in various industries, is very high reactivity of this metal (magnesium with an electronegativity of 31.1 can give electrons to almost all metals and corrodes quickly). To overcome this problem, scholars are trying to produce magnesium (Mg) alloys that are more resistant to a variety of loads and environmental conditions. In this regard, Mg alloys include well-known materials such as aluminum (Al), Zinc (Zn), Manganese (Mn), Silicon (Si), and Copper (Cu), etc., and their amount directly affects the properties of final products. In the present review paper, the authors attempted to present the latest achievements, methods, and influential factors (finish-rolling, pore defects, pH value, microstructure, and manufacturing processes, etc.) on the fatigue life and corrosion resistance of most significant Mg alloys, including AM50, AM60, AZ31, AZ61, AZ80, AZ91, ZK60, and WE43, under various conditions. The summarized results and practical hints presented in this paper can be very useful to enhance the reliability and quality of Mg-made structures

    Enhanced superconducting proximity effect in clean ferromagnetic domain structures

    Full text link
    We investigate the superconducting proximity effect in a clean magnetic structure consisting of two ferromagnetic layered domains with antiparallel magnetizations in contact with a superconductor. Within the quasiclassical Green's function approach we find that the penetration of the superconducting correlations into the magnetic domains can be enhanced as compared to the corresponding single domain structure. This enhancement depends on an effective exchange field which is determined by the thicknesses and the exchange fields of the two domains. The pair amplitude function oscillates spatially inside each domain with a period inversely proportional to the local exchange field. While the oscillations have a decreasing amplitude with distance inside the domain which is attached to the superconductor, they are enhancing in the other domain and can reach the corresponding normal metal value for a zero effective exchange field. We also find that the corresponding oscillations in the Fermi level proximity density of states as a function of the second domain's thickness has an growing amplitude over a range which depends on the effective exchange field. Our findings can be explained as the result of cancellation of the exchange fields induced phases gained by an electron inside the two domains with antiparallel magnetizations.Comment: 7 pages, 4 figure

    A novel PKP2 mutation and intrafamilial phenotypic variability in ARVC/D

    Get PDF
    Background: Arrhythmogenic ventricular cardiomyopathy (AVC) is an inherited cardiac disorder affecting 1 in 1000 individuals worldwide. The mean diagnosed age of disease is 31 years. In this article, an Iranian family reported that they were affected by ARVC due to a novel PKP2 mutation. Methods: Clinical evaluations, 12-lead ECG, CMR, and signal-averaged ECG were performed. After DNA extraction, genetic testing was done, and PCR-sequencing was applied to find causal mutations. Segregation analysis was also performed for the family. Results: ARVC criteria were documented in the patients. Genetic testing revealed a novel chain termination mutation (p.Tyr168Ter) in PKP2 gene; this mutation was transmitted from the mother to her 23-year-old son, but only the son was affected with ARVC. Conclusion: Modifier genes were indicated using interactome analysis of Plakophilin 2 protein (PKP2); they might have led to phenotypic variability through cellular mechanisms, such as nonsense-mediated mRNA decay. At least, 9 proteins were identified that might have affected Plakophilin 2 protein function, and consequently, rationalizing this intrafamilial phenotypic variability. This study highlighted the role of modifier genes involved in ARVC as well as the major role of PKP2 mutation in developing the disease in our population. © Iran University of Medical Sciences
    corecore