34 research outputs found
Effect of heat treatment on the electrochemical behavior of AA2055 and AA2024 alloys for aeronautical applications
Since their development, third-generation aluminum–lithium alloys have been used in aeronautical and other applications due to their good properties, replacing conventional Al-Cu and Al-Zn alloys and resulting in an increase in payload and fuel efficiency. The aim of this work was to investigate the influence of different heat treatments on the electrochemical corrosion behavior of the alloys AA2055 and AA2024 in the presence of three different electrolytes at room temperature, using an electrochemical noise (EN) technique in accordance with the ASTM-G199 standard. In the time domain, the polynomial method was employed to obtain the noise resistance (Rn), the localization index (IL), skewness, and kurtosis, and in the frequency domain, employing power spectral density analysis (PSD). The microstructure and mechanical properties of the alloys were characterized using scanning electron microscopy (SEM) and the Vickers microhardness test (HV). The results demonstrated better mechanical properties of the AA2055 alloy, which had a Vickers hardness of 77, 174, and 199 in the heat treatments T0, T6, and T8, respectively. An electrochemical noise resistance (Rn) of 2.72 105 W cm2 was obtained in the AA2055 T8 alloy evaluated in a NaCl solution, while the lowest Rn resistance of 2.87 101 W cm2 occurred in the AA2024 T8 alloy, which was evaluated in a HCl solution. The highest electrochemical noise resistance (Rn) was obtained in the AA2055 alloys, which had received the T6 and T8 heat treatments in the three solutions
Electrochemical characterization of Al–Li alloys AA2099 and AA2055 for aeronautical applications: effect of thermomechanical treatments
Third-generation Al–Li alloys are high-performance materials that are very attractive for aircraft and aerospace applications due to their relatively low density, high specific strength, and stiffness. To study the effect of heat treatments on the electrochemical behavior of two high-performance aluminum-lithium alloys, in this work the electrochemical noise technique was used to evaluate the corrosion behavior of AA2099 and AA2055 alloys under three conditions of different heat treatments, an annealing treatment (T0), a second treatment in solid solution, followed by rapid cooling (quenching) and subsequent artificial aging (T6), and a third treatment in solid solution, tempering, cold deformation, and maturation artificial (T8). The time series obtained from the electrochemical noise tests were visually analyzed, as well as the statistical parameters such as localization index (LI), bias, and kurtosis. Analysis in the frequency domain was also performed by means of power spectral density (PSD) signals. In general, it was observed that the distribution of precipitates on the surface of the alloys considerably affects the corrosion performance, as well as the concentration of Cl-1 ions in the test electrolytes
Electrochemical Characterization of Modified Concretes with Sugar Cane Bagasse Ash
Corrosion is one of the most serious causes that reduce service life of Reinforced Concrete Structures (RCS). This is why it is necessary to create concrete mixtures that add durability for steel and that reduce impact on the environment. The use of agro-industrial waste materials rich in SiO2, Al2O3 and Fe2O3, added to concrete, has been the subject of research in recent years, because these pozzolanic materials improves o mecharacteristics of concrete, as mechanical strength, sulfate resistance and lower permeability. Binary Concretes were made and evaluated in the impact of Sugar Cane Bagasse Ash (SCBA) as a partial substitute for Portland cement, with the aim of reducing gtherate of corrosion induced by chloride ions and sulfate. The behavior of corrosion was monitored for 14 months in two aqueous solutions of NaCl and Na2SO4 both at 3.5%, using electrochemical techniques of corrosion potential (Ecorr) and linear polarization resistance (Rp). Under the conditions of study, the binary mixture that showed a better corrosion protection was the one that contained 80% from sugar Cane bagasse ash and 20% Portland cement
Corrosion behavior of aluminum-carbon fiber/epoxy sandwich composite exposed on NaCl solution
For years, the aeronautical industry has employed different types of materials to satisfy its high-performance requirements. Fiber-metal laminates are used due to their combination of lighter weight and the high mechanical properties of reinforced metal and carbon. We therefore made two different composites of laminate-metal and laminate-metal-laminate of carbon fiber-reinforced polymer and aluminum with an ALCLAD layer. The samples were characterized by salt fog (0, 48, and 96 h) at 5 wt% NaCl and electrochemical impedance spectroscopy (EIS) with an electrolyte of 3.5 wt% NaCl. All samples were studied by electron scanning microscopy (SEM). The results demonstrated that the samples of laminate-metal-laminate presented an adsorption process after 0 and 48 h of salt fog exposition; meanwhile, the samples of laminate-metal showed a capacitive behavior for all the samples; however, corrosion resistance decreased when the salt fog exposition time increased
Electrochemical corrosion behavior of passivated precipitation hardening stainless steels for aerospace applications
Precipitation-hardening (PH) stainless steels (SS) are widely used in various aerospace applications. These steels exhibit good mechanical and corrosion resistance. The electrochemical behavior of 15-5PH, 17-4PH, Custom450 and AM 350 stainless steels passivated with citric and nitric acid baths for 60 and 90 min at 25 and 49 °C were evaluated in 5 wt.% sodium chloride (NaCl) and 1 wt.% sulfuric acid (H2SO4) solutions. The electrochemical behavior was studied with potentiodynamic polarization curves (PPC) according to the ASTM G5-13 standard. The results indicated that there are two characteristic mechanisms that are present in the potentiodynamic polarization curves. When the PHSS is immersed in an H2SO4 solution, there is a secondary passivation, and in the NaCl solution, there is a pseudo-passivation (not stable passivation film). The current densities in the NaCl solution were between 10−4 and 10−5 mA/cm2, while those of H2SO4 were recorded around 10−2 and 10−3 mA/cm2. Citric acid does work as a passivating solution, and in some cases, the corrosion resistance of the stainless steel was comparable to that of nitric acid
Characterization of Corrosion Behavior of Painted Galvanized Steel under Accelerated Conditions
In the present study three systems of carbon steel (1008) are evaluated, which were provide of two corrosion control methods, barrier and cathodic protection (painted and galvanized respectively) commonly used in the construction industry. They were evaluated under accelerated conditions exposed in fog chamber, according to ASTM B-117, which specifies continues exposition of sodium chloride at 5% and 35 °C. The main aim of the research was to characterize the corrosion resistance and to determine the degradation mechanism under test’s conditions. The results after 1080 and 3500 hours of exposure are presented, with adhesion measure (ASTM D-3359) and scratch resistance measure (D-1654) for each exposure time, as well as the characterization of corrosion attack through the mapping analysis of Scanning Electron Microscope / Energy Dispersive X-ray. According to the results it is proposed that the corrosion of the systems under study begins at galvanized – metal base interface. Later advances due to formation of porous layer of zinc hydroxi-chloride, which it’s characteristic of environments with chloride ions, forming zinc’s corrosion products like zinc oxide and zinc hydroxide on the porous layer until iron starts to dissolve, producing iron oxide and iron oxy-hydroxide on the zinc’s corrosion products and porous layer
Electrochemical Noise Analysis Using Experimental Chaos Theory, Power Spectral Density and Hilbert–Huang Transform in Anodized Aluminum Alloys in Tartaric–Phosphoric–Sulfuric Acid Solutions
Aluminum and its alloys find widespread applications across diverse industries such as the automotive, construction, and aeronautics industries. When these alloys come into contact with ambient air, an Al2O3 thin oxide layer is naturally formed, typically measuring 2 to 4 nm and exhibiting remarkable hardness and protective qualities, rendering the alloys corrosion-resistant in specific atmospheric and chemical environments. This study aimed to characterize the electrochemical behaviors of anodized AA2024 and AA7075 alloys within a complex three-component electrolyte composed of tartaric–phosphoric–sulfuric acid (TPSA) solutions. The anodized specimens were subsequently exposed to 3.5 wt.% NaCl solution at room temperature, and their electrochemical performances were meticulously evaluated using an electrochemical noise (EN) analysis in accordance with ASTM G-199, respectively. In the EN, three methods of data analysis were used: the time domain analysis (chaos analysis: application of Lyapunov exponent and dimension correlation), the frequency domain analysis (power spectral density, PSD), and the time–frequency domains analysis (Hilbert–Huang transform, HHT). Scanning electron microscopy (SEM) was used to observe the morphologies of the anodized surfaces. The results indicated that the AA2024-0, AA2024-1, and AA2024-2 alloys and the AA7075-2 and AA7075-3 samples exhibited mixed corrosion according to the Lyapunov constant, with a notable inclination towards localized corrosion when analyzed using the PSD and HHT methods. The surface was not homogenous, and the corrosion process was predominately localized in specific zones
Corrosion Behavior of AISI 1018 Carbon Steel in Localized Repairs of Mortars with Alkaline Cements and Engineered Cementitious Composites
The selection of materials for repairs of reinforced concrete structures is a serious concern. They are chosen for the mechanical capacity that the repair mortar achieves. However, several important characteristics have been left aside, such as the adhesion of the repair mortar with the concrete substrate, the electrical resistivity and—hugely important—the protection against corrosion that the repair material can provide to the reinforcing steel. The aim of this work was to study the corrosion behavior of AISI 1018 carbon steel (CS) in mortars manufactured with alkaline cements, engineered cementitious composites (ECC), and supplementary cementitious materials (SCM). Two types of ordinary Portland cement (OPC) 30R and 40R were used. The constituent materials for the mortars with ECC mixture mortars they use OPC 40R, class F fly ash (FA), silica fume (SF) and polypropylene (PP) fibers. The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) were used as activating agents in alkali activated cements. The reinforced specimens were immersed in two different electrolytes, exposed to a 3.5 wt % of NaCl and Na2SO4 solutions, for 12 months and their electrochemical behavior was studied by half-cell potential (Ecorr) and linear polarization resistance (LPR) according to ASTM C876-15 and ASTM G59-97, respectively. The results obtained indicated that, the mortar they have the best performance and durability, is the conventional MCXF mortar, with OPC 30R and addition of 1% polypropylene PP fiber improves the behavior against the attack of chlorides and sulfates
Corrosion Behavior of AISI 1018 Carbon Steel in Localized Repairs of Mortars with Alkaline Cements and Engineered Cementitious Composites
The selection of materials for repairs of reinforced concrete structures is a serious concern. They are chosen for the mechanical capacity that the repair mortar achieves. However, several important characteristics have been left aside, such as the adhesion of the repair mortar with the concrete substrate, the electrical resistivity and—hugely important—the protection against corrosion that the repair material can provide to the reinforcing steel. The aim of this work was to study the corrosion behavior of AISI 1018 carbon steel (CS) in mortars manufactured with alkaline cements, engineered cementitious composites (ECC), and supplementary cementitious materials (SCM). Two types of ordinary Portland cement (OPC) 30R and 40R were used. The constituent materials for the mortars with ECC mixture mortars they use OPC 40R, class F fly ash (FA), silica fume (SF) and polypropylene (PP) fibers. The sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) were used as activating agents in alkali activated cements. The reinforced specimens were immersed in two different electrolytes, exposed to a 3.5 wt % of NaCl and Na2SO4 solutions, for 12 months and their electrochemical behavior was studied by half-cell potential (Ecorr) and linear polarization resistance (LPR) according to ASTM C876-15 and ASTM G59-97, respectively. The results obtained indicated that, the mortar they have the best performance and durability, is the conventional MCXF mortar, with OPC 30R and addition of 1% polypropylene PP fiber improves the behavior against the attack of chlorides and sulfate
Corrosion Resistance of Hard Coat Anodized AA 6061 in Citric–Sulfuric Solutions
Aluminum is a material widely used in aeronautical and transport industries due to its excellent mechanical and corrosion resistance properties. Unfortunately, aluminum alloys are susceptible to corrosion, which limits their use in some corrosive environments. The aim of this work is to characterize hard coat film fabricated by anodizing in a citric–sulfuric acid system using electrochemical techniques. The anodization process was carried out using an aluminum alloy AA 6061 anodization bath: a mix of citric and sulfuric acid solutions were used. For the anodizing process, two current densities were used, 1 and 7.2 A·cm−2. Anodized specimens obtained under different conditions were exposed to a 3.5 wt.% NaCl solution, and their electrochemical behavior was studied by electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization (CPP) according to ASTM G106-15 and ASTM G5-13, respectively. Scanning electron microscopy (SEM) was employed to determinate the morphology and thickness of coatings. The results showed improved corrosion resistance in 6061 aluminum anodized in citric–sulfuric acid electrolyte compared to those anodized in sulfuric acid solution