89 research outputs found

    Resurrecting Brinley Plots for a Novel Use: Meta-Analyses of Functional Brain Imaging Data in Older Adults

    Get PDF
    By plotting response times of young and older adults across a variety of tasks, Brinley spurred investigation and debate into the theory of general cognitive slowing. Though controversial, Brinley plots can assess between-task differences, the impact of increasing task demand, and the relationship between responses in two groups of subjects. Since a relationship exists between response times and the blood-oxygen level dependent (BOLD) signal of functional MRI (fMRI), Brinley's plotting method could be applied as a meta-analysis tool in fMRI studies of aging. Here, fledgling “Peiffer plots” are discussed for their potential impact on understanding general cognitive brain activity in aging. Preliminary results suggest that general cognitive slowing may be localized at the sensorimotor transformation in the precentral gyrus. Although this meta-analysis method is naturally used with imaging studies of aging, theoretically it may be applied to other study pairs (e.g., schizophrenic versus normal) or imaging datasets (e.g., PET)

    High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on Large Scale Regularization

    Get PDF
    In this work we use a large scale regularization approach based on penalized logistic regression to automatically classify structural MRI images (sMRI) according to cognitive status. Its performance is illustrated using sMRI data from the Alzheimer Disease Neuroimaging Initiative (ADNI) clinical database. We downloaded sMRI data from 98 subjects (49 cognitive normal and 49 patients) matched by age and sex from the ADNI website. Images were segmented and normalized using SPM8 and ANTS software packages. Classification was performed using GLMNET library implementation of penalized logistic regression based on coordinate-wise descent optimization techniques. To avoid optimistic estimates classification accuracy, sensitivity, and specificity were determined based on a combination of three-way split of the data with nested 10-fold cross-validations. One of the main features of this approach is that classification is performed based on large scale regularization. The methodology presented here was highly accurate, sensitive, and specific when automatically classifying sMRI images of cognitive normal subjects and Alzheimer disease (AD) patients. Higher levels of accuracy, sensitivity, and specificity were achieved for gray matter (GM) volume maps (85.7, 82.9, and 90%, respectively) compared to white matter volume maps (81.1, 80.6, and 82.5%, respectively). We found that GM and white matter tissues carry useful information for discriminating patients from cognitive normal subjects using sMRI brain data. Although we have demonstrated the efficacy of this voxel-wise classification method in discriminating cognitive normal subjects from AD patients, in principle it could be applied to any clinical population

    Head Impact Exposure in Youth Football: Elementary School Ages 9–12 Years and the Effect of Practice Structure

    Get PDF
    Head impact exposure in youth football has not been well-documented, despite children under the age of 14 accounting for 70% of all football players in the United States. The objective of this study was to quantify the head impact exposure of youth football players, age 9–12, for all practices and games over the course of single season. A total of 50 players (age = 11.0 ± 1.1 years) on three teams were equipped with helmet mounted accelerometer arrays, which monitored each impact players sustained during practices and games. During the season, 11,978 impacts were recorded for this age group. Players averaged 240 ± 147 impacts for the season with linear and rotational 95th percentile magnitudes of 43 ± 7 g and 2034 ± 361 rad/s(2). Overall, practice and game sessions involved similar impact frequencies and magnitudes. One of the three teams however, had substantially fewer impacts per practice and lower 95th percentile magnitudes in practices due to a concerted effort to limit contact in practices. The same team also participated in fewer practices, further reducing the number of impacts each player experienced in practice. Head impact exposures in games showed no statistical difference. While the acceleration magnitudes among 9–12 year old players tended to be lower than those reported for older players, some recorded high magnitude impacts were similar to those seen at the high school and college level. Head impact exposure in youth football may be appreciably reduced by limiting contact in practices. Further research is required to assess whether such a reduction in head impact exposure will result in a reduction in concussion incidence

    Rapid-onset dystonia-parkinsonism associated with the I758S mutation of the ATP1A3 gene: a neuropathologic and neuroanatomical study of four siblings

    Get PDF
    Rapid-onset dystonia-parkinsonism (RDP) is a movement disorder associated with mutations in the ATP1A3 gene. Signs and symptoms of RDP commonly occur in adolescence or early adulthood and can be triggered by physical or psychological stress. Mutations in ATP1A3 are also associated with alternating hemiplegia of childhood (AHC). The neuropathologic substrate of these conditions is unknown. The central nervous system of four siblings, three affected by RDP and one asymptomatic, all carrying the I758S mutation in the ATP1A3 gene, was analyzed. This neuropathologic study is the first carried out in ATP1A3 mutation carriers, whether affected by RDP or AHC. Symptoms began in the third decade of life for two subjects and in the fifth for another. The present investigation aimed at identifying, in mutation carriers, anatomical areas potentially affected and contributing to RDP pathogenesis. Comorbid conditions, including cerebrovascular disease and Alzheimer disease, were evident in all subjects. We evaluated areas that may be relevant to RDP separately from those affected by the comorbid conditions. Anatomical areas identified as potential targets of I758S mutation were globus pallidus, subthalamic nucleus, red nucleus, inferior olivary nucleus, cerebellar Purkinje and granule cell layers, and dentate nucleus. Involvement of subcortical white matter tracts was also evident. Furthermore, in the spinal cord, a loss of dorsal column fibers was noted. This study has identified RDP-associated pathology in neuronal populations, which are part of complex motor and sensory loops. Their involvement would cause an interruption of cerebral and cerebellar connections which are essential for maintenance of motor control. Electronic supplementary material The online version of this article (doi:10.1007/s00401-014-1279-x) contains supplementary material, which is available to authorized users

    Montreal Cognitive Assessment and Modified Mini Mental State Examination in African Americans

    Get PDF
    Background. Sparse data limit the interpretation of Montreal Cognitive Assessment (MoCA) scores, particularly in minority populations. Additionally, there are no published data on how MoCA scores compare to the widely used Modified Mini Mental State Examination (3MSE). We provide performance data on the MoCA in a large cohort of African Americans and compare 3MSE and MoCA scores, providing a "crosswalk" for interpreting scores. Methods. Five hundred and thirty African Americans with type 2 diabetes were enrolled in African American-Diabetes Heart Study-MIND, a cross-sectional study of cognition and structural and functional brain imaging. After excluding participants with possible cognitive impairment ( = 115), mean (SD) MoCA and 3MSE scores are presented stratified by age and education. Results. Participant mean age was 58.2 years (range: 35-83); 61% were female; and 64.9% had >12 years of education. Mean (SD) 3MSE and MoCA scores were 86.9 (8.2) and 19.8 (3.8), respectively. 93.5% of the cohort had a "positive" screen on the MoCA, scoring <26 (education-adjusted), compared with 47.5% on the 3MSE (cut-point < 88). A 3MSE score of 88 corresponded to a MoCA score of 20 in this population. Conclusion. The present data suggest the need for caution when applying proposed MoCA cutoffs to African Americans

    Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function

    Get PDF
    PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia

    Differences in carotid arterial morphology and composition between individuals with and without obstructive coronary artery disease: A cardiovascular magnetic resonance study

    Get PDF
    Objective: We sought to determine differences with cardiovascular magnetic resonance (CMR) in the morphology and composition of the carotid arteries between individuals with angiographically-defined obstructive coronary artery disease (CAD, = 50% stenosis, cases) and those with angiographically normal coronaries (no lumen irregularities, controls). Methods and results: 191 participants (50.3% female; 50.8% CAD cases) were imaged with a multi-sequence, carotid CMR protocol at 1.5T. For each segment of the carotid, lumen area, wall area, total vessel area (lumen area + wall area), mean wall thickness and the presence or absence of calcification and lipid-rich necrotic core were recorded bilaterally. In male CAD cases compared to male controls, the distal bulb had a significantly smaller lumen area (60.0 [plus or minus] 3.1 vs. 79.7 [plus or minus] 3.2 mm[super]2, p less than 0.001) and total vessel area (99.6 [plus or minus] 4.0 vs. 119.8 [plus or minus] 4.1 mm[super]2; p less than 0.001), and larger mean wall thickness (1.25 [plus or minus] 0.03 vs. 1.11 [plus or minus] 0.03 mm; p = 0.002). Similarly, the internal carotid had a smaller lumen area (37.5 [plus or minus] 1.8 vs. 44.6 [plus or minus] 1.8 mm[super]2; p = 0.006) and smaller total vessel area (64.0 [plus or minus] 2.3 vs. 70.9 [plus or minus] 2.4 mm[super]2; p = 0.04). These metrics were not significantly different between female groups in the distal bulb and internal carotid or for either gender in the common carotid. Male CAD cases had an increased prevalence of lipid-rich necrotic core (49.0% vs. 19.6%; p = 0.003), while calcification was more prevalent in both male (46.9% vs. 17.4%; p = 0.002) and female (33.3% vs. 14.6%; p = 0.031) CAD cases compared to controls. Conclusion: Males with obstructive CAD compared to male controls had carotid bulbs and internal carotid arteries with smaller total vessel and lumen areas, and an increased prevalence of lipid-rich necrotic core. Carotid calcification was related to CAD status in both males and females. Carotid CMR identifies distinct morphological and compositional differences in the carotid arteries between individuals with and without angiographically-defined obstructive CAD.Carotid Atherosclerosis (MRI) Progression Study (CAMPS, HL076378) and Cardiovascular Research Training Program (T-32, HL07838); and the General Clinical Research Center at the Wake Forest University School of Medicine (M01 RR-07122)

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
    corecore