26 research outputs found

    Blockade of the renin-angiotensin system inhibits growth of colorectal cancer liver metastases in the regenerating liver

    Get PDF
    Partial hepatectomy (PH), the preferred option for selected patients with colorectal cancer liver metastases (CRCLM), is associated with 40-80% tumor recurrence rates. Renin-angiotensin system (RAS) blockade inhibits tumor growth and has been suggested to improve liver regeneration. We documented the effect of RAS blockade on tumor growth and liver regeneration in a murine model. CRCLM induction followed by 70% PH was performed on 78 CBA mice. Liver regeneration (days 2, 6) and CRCLM tumor load were measured by liver (and tumor) weights, percentage of CRCLM burden and tumor nodule count (days 16, 21). mRNA expression of the RAS components was characterised. Statistical analysis was performed using 2-independent sample T test or Mann-Whitney test (SPSS). Captopril did not impair liver regeneration. By day 21, Captopril decreased tumor burden (percentage of CRCLM in the liver) (48.7 ± 4.7% control, 24.4 ± 6.2 Captopril; p = 0.008), tumor volume (1046.2 ± 200.2 mm(3), 388.3 ± 150.4; p = 0.02), tumor nodule count per image field (181.1 ± 28.5, 68 ± 17.6; p = 0.005) and tumor angiogenesis (71.8 ± 6.4 vessels/mm(2), 43.1 ± 7.6; p = 0.015) compared to controls. Captopril enhanced tumor apoptosis (1 ± 0.2%, 2.5 ± 0.7; p = 0.028). Liver regeneration and tumor development increased liver ACE levels. Blockade of the RAS effectively retarded CRCLM tumor growth at the late stage of tumor development within the regenerating liver without impeding liver regeneration following PH, via anti-angiogenesis and pro-tumor apoptosis. Captopril may be of therapeutic benefit in patients undergoing PH for CRCLM

    Spatial morphological and molecular differences within solid tumors may contribute to the failure of vascular disruptive agent treatments

    Get PDF
    BACKGROUND: Treatment of solid tumors with vascular disrupting agent OXi4503 results in over 90% tumor destruction. However, a thin rim of viable cells persists in the tumor periphery following treatment, contributing to subsequent recurrence. This study investigates inherent differences in the microenvironment of the tumor periphery that contribute to treatment resistance. METHODS: Using a murine colorectal liver metastases model, spatial morphological and molecular differences within the periphery and the center of the tumor that may account for differences in resistance to OXi4503 treatment were investigated. H&E staining and immunostaining were used to examine vessel maturity and stability, hypoxia and HIF1α levels, accumulation of immune cells, expression of proangiogenic factors/receptors (VEGF, TGF-β, b-FGF, and AT1R) and expression of EMT markers (ZEB1, vimentin, E-cadherin and β-catenin) in the periphery and center of established tumors. The effects of OXi4503 on tumor vessels and cell kinetics were also investigated. RESULTS: Significant differences were found between tumor periphery and central regions, including association of the periphery with mature vessels, higher accumulation of immune cells, increased growth factor expression, minimal levels of hypoxia and increased evidence of EMT. OXi4503 treatment resulted in collapse of vessels in the tumor center; however vasculature in the periphery remained patent. Similarly, tumor apoptosis and proliferation were differentially modulated between centre and periphery after treatment. CONCLUSIONS: The molecular and morphological differences between tumor periphery and center may account for the observed differential resistance to OXi4503 treatment and could provide targets for drug development to totally eliminate metastases
    corecore