3,929 research outputs found
A novel topology of high-speed SRM for high-performance traction applications
A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results
Subsonic high-angle-of-attack aerodynamic characteristics of a cone and cylinder with triangular cross sections and a cone with a square cross section
Experiments were conducted in the 12-Foot Pressure Wind Tunnel at Ames Research Center on three models with noncircular cross sections: a cone having a square cross section with rounded corners and a cone and cylinder with triangular cross sections and rounded vertices. The cones were tested with both sharp and blunt noses. Surface pressures and force and moment measurements were obtained over an angle of attack range from 30 deg to 90 deg and selected oil-flow experiments were conducted to visualize surface flow patterns. Unit Reynolds numbers ranged from 0.8x1,000,000/m to 13.0x1,000,000/m at a Mach number of 0.25, except for a few low-Reynolds-number runs at a Mach number of 0.17. Pressure data, as well as force data and oil-flow photographs, reveal that the three dimensional flow structure at angles of attack up to 75 deg is very complex and is highly dependent on nose bluntness and Reynolds number. For angles of attack from 75 deg to 90 deg the sectional aerodynamic characteristics are similar to those of a two dimensional cylinder with the same cross section
Electronic properties of buried hetero-interfaces of LaAlO3 on SrTiO3
We have made very thin films of LaAlO3 on TiO2 terminated SrTiO3 and have
measured the properties of the resulting interface in various ways. Transport
measurements show a maximum sheet carrier density of 1016 cm-2 and a mobility
around 104 cm2 V-1 s-1. In situ ultraviolet photoelectron spectroscopy (UPS)
indicates that for these samples a finite density of states exists at the Fermi
level. From the oxygen pressure dependence measured in both transport as well
as the UPS, we detail, as reported previously by us, that oxygen vacancies play
an important role in the creation of the charge carriers and that these
vacancies are introduced by the pulsed laser deposition process used to make
the heterointerfaces. Under the conditions studied the effect of LaAlO3 on the
carrier density is found to be minimal.Comment: 19 pages, 6 figure
Prognostic Value of Computed Tomography : Measured Parameters of Body Composition in Primary Operable Gastrointestinal Cancers
Professor Graeme Murray, Department of Pathology, University of Aberdeen provided us access to the colorectal cancer pathology databases from which the colorectal component of the research was based. Conflict of interest There are no conflicts of interest.Peer reviewedPublisher PD
Strain tuning of topological band order in cubic semiconductors
We theoretically explore the possibility of tuning the topological order of
cubic diamond/zinc-blende semiconductors with external strain. Based on the
tight-binding model, we analyze the evolution of the cubic semiconductor band
structure under hydrostatic or biaxial lattice expansion, by which a generic
guiding principle is established that lattice \emph{expansion} can induce a
topological phase transition of small band-gap cubic semiconductors via a band
inversion, and further breaking of the cubic symmetry leads to a topological
insulating phase. Using density functional theory calculations, we demonstrate
that a prototype topological trivial semiconductor, InSb, is converted to a
nontrivial topological semiconductor with a 2%-3% biaxial lattice expansion.Comment: 4 pages, 3 figure
Status of Kilowatt-Class Stirling Power Conversion Using a Pumped NaK Loop for Thermal Input
Free-piston Stirling power conversion has been identified as a viable option for potential Fission Surface Power (FSP) systems on the Moon and Mars. Proposed systems consist of two or more Stirling convertors, in a dual-opposed configuration, coupled to a low-temperature uranium-dioxide-fueled, liquid-metal-cooled reactor. To reduce developmental risks associated with liquid-metal loop integration, a test rig has been built to evaluate the performance of a pair of 1-kW free-piston Stirling convertors using a pumped sodium-potassium (NaK) loop for thermal energy input. Baseline performance maps have been generated at the Glenn Research Center (GRC) for these 1-kW convertors operating with an electric heat source. Each convertor was then retrofitted with a custom-made NaK heater head and integrated into a pumped NaK system at the Marshall Space Flight Center (MSFC). This paper documents baseline testing at GRC as well as the progress made in integrating the Stirling convertors into the pumped NaK loop
Kaluza-Klein electrically charged black branes in M-theory
We present a class of Kaluza-Klein electrically charged black p-brane
solutions of ten-dimensional, type IIA superstring theory. Uplifting to eleven
dimensions these solutions are studied in the context of M-theory. They can be
interpreted either as a p+1 extended object trapped around the eleventh
dimension along which momentum is flowing or as a boost of the following
backgrounds: the Schwarzschild black (p+1)-brane or the product of the
(10-p)-dimensional Euclidean Schwarzschild manifold with the (p+1)-dimensional
Minkowski spacetime.Comment: 16 pages, uses latex and epsf macro, figures include
Stationary axisymmetric exteriors for perturbations of isolated bodies in general relativity, to second order
Perturbed stationary axisymmetric isolated bodies, e.g. stars, represented by
a matter-filled interior and an asymptotically flat vacuum exterior joined at a
surface where the Darmois matching conditions are satisfied, are considered.
The initial state is assumed to be static. The perturbations of the matching
conditions are derived and used as boundary conditions for the perturbed Ernst
equations in the exterior region. The perturbations are calculated to second
order. The boundary conditions are overdetermined: necessary and sufficient
conditions for their compatibility are derived. The special case of
perturbations of spherical bodies is given in detail.Comment: RevTeX; 32 pp. Accepted by Phys. Rev. D. Added references and extra
comments in introductio
Sensitivity of the interlayer magnetoresistance of layered metals to intralayer anisotropies
Many of the most interesting and technologically important electronic
materials discovered in the past two decades have two common features: a
layered crystal structure and strong interactions between electrons. Two of the
most fundamental questions about such layered metals concern the origin of
intralayer anisotropies and the coherence of interlayer charge transport. We
show that angle dependent magnetoresistance oscillations (AMRO) are sensitive
to anisotropies around an intralayer Fermi surface. Hence, AMRO can be a probe
of intralayer anisotropies that is complementary to angle-resolved
photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).
However, AMRO are not very sensitive to the coherence of the interlayer
transport. We illustrate this with comparisons to recent AMRO experiments on an
overdoped cuprate.Comment: 7 pages, 3 figure
- …