1,208 research outputs found

    Hydrodynamic stability of swimming in ostraciid fishes: role of the carapace in the smooth trunkfish Lactophrys triqueter (Teleostei: Ostraciidae)

    Get PDF
    The hydrodynamic bases for the stability of locomotory motions in fishes are poorly understood, even for those fishes, such as the rigid-bodied smooth trunkfish Lactophrys triqueter, that exhibit unusually small amplitude recoil movements during rectilinear swimming. We have studied the role played by the bony carapace of the smooth trunkfish in generating trimming forces that self-correct for instabilities. The flow patterns, forces and moments on and around anatomically exact, smooth trunkfish models positioned at both pitching and yawing angles of attack were investigated using three methods: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. Models positioned at various pitching angles of attack within a flow tunnel produced well-developed counter-rotating vortices along the ventro-lateral keels. The vortices developed first at the anterior edges of the ventro-lateral keels, grew posteriorly along the carapace, and reached maximum circulation at the posterior edge of the carapace. The vortical flow increased in strength as pitching angles of attack deviated from 0°, and was located above the keels at positive angles of attack and below them at negative angles of attack. Variation of yawing angles of attack resulted in prominent dorsal and ventral vortices developing at far-field locations of the carapace; far-field vortices intensified posteriorly and as angles of attack deviated from 0°. Pressure distribution results were consistent with the DPIV findings, with areas of low pressure correlating well with regions of attached, concentrated vorticity. Lift coefficients of boxfish models were similar to lift coefficients of delta wings, devices that also generate lift through vortex generation. Furthermore, nose-down and nose-up pitching moments about the center of mass were detected at positive and negative pitching angles of attack, respectively. The three complementary experimental approaches all indicate that the carapace of the smooth trunkfish effectively generates self-correcting forces for pitching and yawing motions — a characteristic that is advantageous for the highly variable velocity fields experienced by trunkfish in their complex aquatic environment. All important morphological features of the carapace contribute to producing the hydrodynamic stability of swimming trajectories in this species

    Time-lapse CCD imagery of plasma-tail motions in Comet Austin

    Get PDF
    The appearance of the bright comet Austin 1989c1 in April-May of 1990 allowed us to test a new imaging instrument at the Joint Observatory for Cometary Research (JOCR). It is a 300mm lens/charge coupled device (CCD) system with interference filters appropriate for cometary emissions. The 13 frames were made into a time-lapse movie showing the evolution of the plasma tail. We were able to follow at least two large-scale waves out through the main tail structure. During the sequence, we saw two new tail rays form and undergo similar wave motion

    Flow Patterns Around the Carapaces of Rigid-bodied, Multi-propulsor Boxfishes (Teleostei: Ostraciidae)

    Get PDF
    Boxfishes (Teleostei: Ostraciidae) are rigid-body, multi-propulsor swimmers that exhibit unusually small amplitude recoil movements during rectilinear locomotion. Mechanisms producing the smooth swimming trajectories of these fishes are unknown, however. Therefore, we have studied the roles the bony carapaces of these fishes play in generating this dynamic stability. Features of the carapaces of four morphologically distinct species of boxfishes were measured, and anatomically-exact stereolithographic models of the boxfishes were constructed. Flow patterns around each model were investigated using three methods: 1) digital particle image velocimetry (DPIV), 2) pressure distribution measurements, and 3) force balance measurements. Significant differences in both cross-sectional and longitudinal carapace morphology were detected among the four species. However, results from the three interrelated approaches indicate that flow patterns around the various carapaces are remarkably similar. DPIV results revealed that the keels of all boxfishes generate strong longitudinal vortices that vary in strength and position with angle of attack. In areas where attached, concentrated vorticity was detected using DPIV, low pressure also was detected at the carapace surface using pressure sensors. Predictions of the effects of both observed vortical flow patterns and pressure distributions on the carapace were consistent with actual forces and moments measured using the force balance. Most notably, the three complementary experimental approaches consistently indicate that the ventral keels of all boxfishes, and in some species the dorsal keels as well, effectively generate self-correcting forces for pitching motions—a characteristic that is advantageous for the highly variable velocity fields in which these fishes reside

    3-D Finite Di erence Modeling for Borehole and Reservoir Applications

    Get PDF
    ERL's in-house nite difference code (Krasovec et al., 2003) has undergone several upgrades in the past year. Most notably, a stretched grid can now be used to greatly reduce the amount of RAM memory needed by certain types of models. Improvements have been made in the GUI front end, allowing more freedom and ease in building the model, source or source array, and receiver array. The finite difference code has contributed to several different research projects at ERL in the past year. A few of these projects, including borehole seismics, reservoir delineation, and source mechanics, are shown in this report.Massachusetts Institute of Technology. Earth Resources LaboratoryMassachusetts Institute of Technology. Borehole Acoustics and Logging Consortiu

    Secreted Lymphotoxin-α Is Essential for the Control of an Intracellular Bacterial Infection

    Get PDF
    Although the essential role of tumor necrosis factor (TNF) in the control of intracellular bac-terial infection is well established, it is uncertain whether the related cytokines lymphotoxin-α (LTα3) and lymphotoxin-β (LTβ) have independent roles in this process. Using C57Bl/6 mice in which the genes for these cytokines have been disrupted, we have examined the relative contribution of secreted LTα3 and membrane-bound LTβ in the host response to aerosol Mycobacterium tuberculosis infection. To overcome the lack of peripheral lymph nodes in LTα−/− and LTβ−/− mice, bone marrow chimeric mice were constructed. LTα−/− chimeras, which lack both secreted LTα3 and membrane-bound LTβ (LTα1β2 and LTα2β1), were highly susceptible and succumbed 5 wk after infection. LTβ−/− chimeras, which lack only the membrane-bound LTβ, controlled the infection in a comparable manner to wild-type (WT) chimeric mice. T cell responses to mycobacterial antigens and macrophage responses in LTα−/− chimeras were equivalent to those of WT chimeras, but in LTα−/− chimeras, granuloma formation was abnormal. LTα−/− chimeras recruited normal numbers of T cells into their lungs, but the lymphocytes were restricted to perivascular and peribronchial areas and were not colocated with macrophages in granulomas. Therefore, LTα3 is essential for the control of pulmonary tuberculosis, and its critical role lies not in the activation of T cells and macrophages per se but in the local organization of the granulomatous response

    CNN Architectures for Large-Scale Audio Classification

    Full text link
    Convolutional Neural Networks (CNNs) have proven very effective in image classification and show promise for audio. We use various CNN architectures to classify the soundtracks of a dataset of 70M training videos (5.24 million hours) with 30,871 video-level labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We investigate varying the size of both training set and label vocabulary, finding that analogs of the CNNs used in image classification do well on our audio classification task, and larger training and label sets help up to a point. A model using embeddings from these classifiers does much better than raw features on the Audio Set [5] Acoustic Event Detection (AED) classification task.Comment: Accepted for publication at ICASSP 2017 Changes: Added definitions of mAP, AUC, and d-prime. Updated mAP/AUC/d-prime numbers for Audio Set based on changes of latest Audio Set revision. Changed wording to fit 4 page limit with new addition
    corecore