167 research outputs found

    Spinal cord trauma and the molecular point of no return

    Get PDF
    A mechanical trauma to the spinal cord can be followed by the development of irreversible and progressive neurodegeneration, as opposed to a temporary or partially reversible neurological damage. An increasing body of experimental and clinical evidence from humans and animal models indicates that spinal cord injury may set in motion the development of disabling and at times fatal neuromuscular disorders, whose occurrence is not normally associated with any major environmental event. This outcome appears to be dependent on the co-occurrence of a particular form of mechanical stress and of a genetically-determined vulnerability. This increased vulnerability to spinal cord injury may depend on a change of the nature and of the timing of activation of a number of neuroprotective and neurodestructive molecular signals in the injured cord. Among the main determinants, we could mention an altered homeostasis of lipids and neurofilaments, an earlier inflammatory response and the failure of the damaged tissue to rein in oxidative damage and apoptotic cell death. These changes could force injured tissue beyond a point of no return and precipitate an irreversible neurodegenerative process. A better knowledge of the molecular signals activated in a state of increased vulnerability to trauma can inform future treatment strategies and the prediction of the neurological outcome after spinal cord injury

    The human G93A-SOD1 mutation in a pre-symptomatic rat model of amyotrophic lateral sclerosis increases the vulnerability to a mild spinal cord compression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traumatic injuries can undermine neurological functions and act as risk factors for the development of irreversible and fatal neurodegenerative disorders like amyotrophic lateral sclerosis (ALS). In this study, we have investigated how a mutation of the superoxide dismutase 1 (SOD1) gene, linked to the development of ALS, modifies the acute response to a gentle mechanical compression of the spinal cord. In a 7-day post-injury time period, we have performed a comparative ontological analysis of the gene expression profiles of injured spinal cords obtained from pre-symptomatic rats over-expressing the G93A-SOD1 gene mutation and from wild type (WT) littermates.</p> <p>Results</p> <p>The steady post-injury functional recovery observed in WT rats was accompanied by the early activation at the epicenter of injury of several growth-promoting signals and by the down-regulation of intermediate neurofilaments and of genes involved in the regulation of ion currents at the 7 day post-injury time point. The poor functional recovery observed in G93A-SOD1 transgenic animals was accompanied by the induction of fewer pro-survival signals, by an early activation of inflammatory markers, of several pro-apoptotic genes involved in cytochrome-C release and by the persistent up-regulation of the heavy neurofilament subunits and of genes involved in membrane excitability. These molecular changes occurred along with a pronounced atrophy of spinal cord motor neurones in the G93A-SOD1 rats compared to WT littermates after compression injury.</p> <p>Conclusions</p> <p>In an experimental paradigm of mild mechanical trauma which causes no major tissue damage, the G93A-SOD1 gene mutation alters the balance between pro-apoptotic and pro-survival molecular signals in the spinal cord tissue from the pre-symptomatic rat, leading to a premature activation of molecular pathways implicated in the natural development of ALS.</p

    Mild motor impairment as prodromal state in amyotrophic lateral sclerosis:A new diagnostic entity

    Get PDF
    Amyotrophic lateral sclerosis, when viewed as a biological entity rather than a clinical syndrome, probably evolves along a continuum, with the initial clinically silent phase eventually evolving into clinically manifest amyotrophic lateral sclerosis. Since motor neuron degeneration is incremental and cumulative over time, it stands to reason that the clinical syndrome of amyotrophic lateral sclerosis is probably preceded by a prodromal state characterized by minor motor abnormalities that are initially insufficient to permit a diagnosis of amyotrophic lateral sclerosis. This prodromal period, however, is usually missed, given the invariably long delays between symptom onset and diagnostic evaluation. The Pre-Symptomatic Familial ALS Study, a cohort study of pre-symptomatic gene mutation carriers, offers a unique opportunity to observe what is typically unseen. Here we describe the clinical characterization of 20 pre-symptomatic mutation carriers (in SOD1, FUS and C9orf72) whose phenoconversion to clinically manifest disease has been prospectively studied. In so doing, we observed a prodromal phase of mild motor impairment in 11 of 20 phenoconverters. Among the n = 12 SOD1 A4V mutation carriers, phenoconversion was characterized by abrupt onset of weakness, with a short (1–3.5 months) prodromal period observable in a small minority (n = 3); the observable prodrome invariably involved the lower motor neuron axis. By contrast, in all n = 3 SOD1 I113T mutation carriers, diffuse lower motor neuron and upper motor neuron signs evolved insidiously during a prodromal period that extended over a period of many years; prodromal manifestations eventually coalesced into a clinical syndrome that is recognizable as amyotrophic lateral sclerosis. Similarly, in all n = 3 C9orf72 hexanucleotide repeat expansion mutation carriers, focal or multifocal manifestations of disease evolved gradually over a prodromal period of 1–2 years. Clinically manifest ALS also emerged following a prodromal period of mild motor impairment, lasting >4 years and ∼9 months, respectively, in n = 2 with other gene mutations (SOD1 L106V and FUS c.521del6). On the basis of this empirical evidence, we conclude that mild motor impairment is an observable state that precedes clinically manifest disease in three of the most common genetic forms of amyotrophic lateral sclerosis (SOD1, FUS, C9orf72), and perhaps in all genetic amyotrophic lateral sclerosis; we also propose that this might be true of non-genetic amyotrophic lateral sclerosis. As a diagnostic label, mild motor impairment provides the language to describe the indeterminate (and sometimes intermediate) transition between the unaffected state and clinically manifest amyotrophic lateral sclerosis. Recognizing mild motor impairment as a distinct clinical entity should generate fresh urgency for developing biomarkers reflecting the earliest events in the degenerative cascade, with potential to reduce the diagnostic delay and to permit earlier therapeutic intervention

    Construction of a YAC contig covering human chromosome 6p22

    Get PDF
    A contig covering human chromosome 6p22 that consists of 134 YAC clones aligned based on the presence/absence of 52 DNA markers is presented. This contig overlaps with the 6p23 contig at its telomeric end and with the 6p21.3 contig at its centromeric end. The order of loci within the contig resolves the relative positions of several genetically mapped markers. Among the additional markers used here, there are eight novel PCR assays. The 12 known genes and anonymous ESTs located within the contig establish a first step toward a transcriptional map of this region. The instability of YAC clones observed during this work is also discussed. (C) 1996 Academic Press, Inc

    MICROWAVE-ASSISTED BRUCITE AND TALC REACTIONS WITH CO2 AS A PROXY FOR CARBON CAPTURE AND STORAGE BY SERPENTINE

    Get PDF
    In the last decades many studies have been focusing on Carbon Capture and Storage (CCS) to find a possible remedy to reduce the large increase of anthropogenic carbon dioxide (CO ). Mineral Carbonation (MC) is a potential solution for almost irreversible chemical long-term CCS. It concerns the combination of CaO and MgO with CO forming spontaneously and exothermically dolomite and magnesite. However, kinetic barriers pose sever limitations for the practical exploitation of this reaction. High fractions of MgO are available in silicates such as olivine, orthopyroxene, clinopyroxene and serpentine. To date, data reported that serpentine polymorphs, above all antigorite, is an excellent candidate for fixing the CO as the reaction efficiency is approximately 92% compared to lizardite (40%) and olivine (66%). This is due to the surface reactivity of approximately 18.7 m /g for the dehydrated antigorite compared to10.8 m /g for dehydrated lizardite and 4.6 m /g for olivine. The microwave assisted process for CCS is an innovative technology that can be employed to catalyze the reaction through thermal and non-thermal mechanisms. Some pioneering tests of direct carbonation by microwave hydrothermal equipment have been performed on olivine, lizardite and chrysotile powders [1] but not on antigorite. The structure of serpentine is characterized by corrugated stacked layers of silica and brucite. For this reason, MC involves dissolution of SiO layers, dissolution/dehydration of Mg(OH) layers, and precipitation of magnesium carbonate. To address the chemical response of the single phases, experiments have been performed by both a local microwave-source acting locally on a specific crystal surface and a volume source interacting with an ensemble of grains on synthetic powders and single crystals of pure brucite and talc. In a second step, treatments have been extended to chrysotile, lizardite and antigorite. A characterization of the mechanism and kinetics were performed by scanning probe microscopy on the surface of single crystals phases, supported by Raman spectroscopy and by Scanning and Transmission Electron Microscopy study performed on micro- and nano-sized grains. [1] White, et al. Reaction mechanisms of magnesium silicates with carbon dioxide in microwave fields. Final Report to the U.S. Department ofEnergy, National Energy Technology Laboratory (2004

    Productividad, Costos y Márgenes de Trigo en un Sistema en Transición Agroecológica Comparado con un Sistema Agrícola Industrial

    Get PDF
    Los objetivos fueron evaluar productiva y económicamente el trigo bajo dos sistemas productivos: agroecológico y bajo el modelo actual (ACTUAL), así como comparar el trigo agroecológico bajo dos estrategias de manejo: sobre Avena Vicia rolada y sobre Avena Vicia Pastoreada. Los trigos agroecológicos presentaron mayores costos de labores, pero menores costos de insumos (133 y 147 U$S/ha menos). Por lo tanto el costo directo total del trigo agroecológico fue entre 39 y 49% menor que el ACTUAL. Consecuentemente, el trigo bajo un sistema de base agroecológica presentó mayor margen bruto, mayor retorno por peso invertido y un menor rendimiento de indiferencia que la alternativa de trigo ACTUAL. En conclusión, la aplicación de modelos de base agroecológica permitió obtener cultivos con muy buena rentabilidad y menor riesgo productivo, así como un menor impacto sobre el ambiente por el reemplazo en gran medida de insumos y energía externa por procesos e interacciones naturales.Fil: Zamora, Martín. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Regalía, Adrián. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Barbera, Agustín. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Carrasco, Natalia. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Malaspina, Micaela. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; ArgentinaFil: Taraborelli, Paula Andrea. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Barrow; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaPrimer Congreso Argentino de AgroecologíaMendozaArgentinaUniversidad Nacional de Cuyo. Facultad de Ciencias AgrariasSociedad Argentina de Agroecologí

    Label-free fibre optic Raman spectroscopy with bounded simplex-structured matrix factorization for the serial study of serum in amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease biomarkers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suitable for use away from a standard laboratory setting. Using this system, we examined serum obtained from patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-negative matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows promise in the quantification of disease-related changes in ALS over short timescales

    Opinion: more mouse models and more translation needed for ALS

    Get PDF
    Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions
    corecore