115 research outputs found
Positronium laser cooling via the - transition with a broadband laser pulse
We report on laser cooling of a large fraction of positronium (Ps) in
free-flight by strongly saturating the - transition with a
broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is
produced in a magnetic and electric field-free environment. We observe two
different laser-induced effects. The first effect is an increase in the number
of atoms in the ground state after the time Ps has spent in the long-lived
states. The second effect is the one-dimensional Doppler cooling of Ps,
reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a
58(9) % increase in the coldest fraction of the Ps ensemble.Comment: 6 pages, 5 figure
CIRCUS: an autonomous control system for antimatter, atomic and quantum physics experiments
AbstractA powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEḡIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN’s Antiproton Decelerator and, more broadly, in atomic and quantum physics research. Its setup is based on Sinara/ARTIQ and TALOS, integrating the ALPACA analysis pipeline, the last two developed entirely in AEḡIS. It is suitable for strict synchronicity requirements and repeatable, automated operation of experiments, culminating in autonomous parameter optimisation via feedback from real-time data analysis. CIRCUS has been successfully deployed and tested in AEḡIS; being experiment-agnostic and released open-source, other experiments can leverage its capabilities.</jats:p
Positronium Laser Cooling via the 1 3 S − 2 3 P Transition with a Broadband Laser Pulse
We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived 2^{3}P states. The second effect is one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) to 170(20) K. We demonstrate a 58(9)% increase in the fraction of Ps atoms with v_{1D}<3.7×10^{4} ms^{-1}
- …