31 research outputs found
The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions
A comprehensive monitoring system for the thermal environment inside the
Borexino neutrino detector was developed and installed in order to reduce
uncertainties in determining temperatures throughout the detector. A
complementary thermal management system limits undesirable thermal couplings
between the environment and Borexino's active sections. This strategy is
bringing improved radioactive background conditions to the region of interest
for the physics signal thanks to reduced fluid mixing induced in the liquid
scintillator. Although fluid-dynamical equilibrium has not yet been fully
reached, and thermal fine-tuning is possible, the system has proven extremely
effective at stabilizing the detector's thermal conditions while offering
precise insights into its mechanisms of internal thermal transport.
Furthermore, a Computational Fluid-Dynamics analysis has been performed, based
on the empirical measurements provided by the thermal monitoring system, and
providing information into present and future thermal trends. A two-dimensional
modeling approach was implemented in order to achieve a proper understanding of
the thermal and fluid-dynamics in Borexino. It was optimized for different
regions and periods of interest, focusing on the most critical effects that
were identified as influencing background concentrations. Literature
experimental case studies were reproduced to benchmark the method and settings,
and a Borexino-specific benchmark was implemented in order to validate the
modeling approach for thermal transport. Finally, fully-convective models were
applied to understand general and specific fluid motions impacting the
detector's Active Volume.Comment: arXiv admin note: substantial text overlap with arXiv:1705.09078,
arXiv:1705.0965
Anatomical landmarks for ankle block
Abstract We aimed to describe anatomical landmarks to accurately locate the five nerves that are infiltrated to accomplish anaesthesia of the foot in an ankle block. Twenty-four formaldehyde-fixed cadaveric ankles were studied. Photographs of cross sections of the frozen legs, cut at a horizontal plane across the most prominent points of the medial and lateral malleoli, were analysed. The curvilinear distance from the most prominent point of the closest malleolus to each of the five cutaneous nerves and their depth from the skin surface were measured. Sural, tibial, deep peroneal, saphenous and medial dorsal cutaneous nerves were located 5.2 ± 1.3, 9.2 ± 2.4, 7.4 ± 1.9, 2.8 ± 1.1, 2.1 ± 0.6 mm deep to the skin surface. The curvilinear distances from the medial malleolus to the tibial, deep peroneal and saphenous nerves were 32.5 ± 8.9, 62.8 ± 11.1 and 24.4 ± 7.9 mm, respectively. The curvilinear distances from the lateral malleolus to the sural and medial dorsal cutaneous branches of superficial peroneal nerves were 27.9 ± 6.3 and 52.7 ± 7.3 mm, respectively. The deep peroneal nerve was found between the tendons of the extensor hallucis longus and the extensor digitorum longus in the majority of specimens, while the medial dorsal cutaneous nerve was almost exclusively found on the extensor digitorum longus tendon. The sural and tibial nerves were located around halfway between the most prominent point of the relevant malleolus and the posterior border of the Achilles tendon. In conclusion, this study describes easily identifiable, palpable bony and soft tissue landmarks that could be used to locate the nerves around the ankle