4 research outputs found

    Activity and telluric contamination in HARPS observations of Alpha Centauri B

    Get PDF
    © 2019 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.The Alpha Centauri system is the primary target for planet search as it is the closest star system composed of a solar twin α CenA, a K-dwarf α Cen B, and an M-dwarf Proxima Centauri, which has a confirmed planet in the temperate zone. α CenA and B weremonitored intensively with the HARPS spectrograph for over 10 yr, providing high-precision radial velocity (RV) measurements. In this work, we study the available data to better understand the stellar activity and other contaminating signals.We highlight the importance of telluric contamination and its impact on the RV measurements. Our suggested procedures lead to discarding about 5 per cent of HARPS data, providing a data set with an rms improved by a factor of 2. We compile and quantify the behaviour of 345 spectral lines with a wide range of line shapes and sensitivity to activity.Peer reviewedFinal Published versio

    Exploring the robustness of Keplerian signals to the removal of active and telluric features

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We examine the influence of activity- and telluric-induced radial velocity signals on high resolution spectra taken with an iodine absorption cell. We exclude 2 Angstrom spectral chunks containing active and telluric lines based on the well characterised K1V star Alpha Centauri B and illustrate the method on Epsilon Eridani - an active K2V star with a long period low amplitude planetary signal. After removal of the activity- and telluric-sensitive parts of the spectrum from the radial velocity calculation, the significance of the planetary signal is increased and the stellar rotation signal disappears. In order to assess the robustness of the procedure, we perform Monte Carlo simulations based on removing random chunks of the spectrum. Simulations confirm that the removal of lines impacted by activity and tellurics provides a method for checking the robustness of a given Keplerian signal. We also test the approach on HD 40979 which is an active F8V star with a large amplitude planetary signal. Our Monte Carlo simulations reveal that the significance of the Keplerian signal in the F star is much more sensitive to wavelength. Unlike the K star the removal of active lines from the F star greatly reduces the radial velocity precision. In this case, our removal of a K star active lines from an F star does not a provide a simple useful diagnostic because it has far less radial velocity information and heavily relies on the strong active lines.Peer reviewe

    The impact of unresolved magnetic spots on high precision radial velocity measurements

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.The Doppler method of exoplanet detection has been extremely successful, but suffers from contaminating noise from stellar activity. In this work a model of a rotating star with a magnetic field based on the geometry of the K2 star Epsilon Eridani is presented and used to estimate its effect on simulated radial velocity measurements. A number of different distributions of unresolved magnetic spots were simulated on top of the observed large-scale magnetic maps obtained from eight years of spectropolarimetric observations. The radial velocity signals due to the magnetic spots have amplitudes of up to 10 m s1^{-1}, high enough to prevent the detection of planets under 20 Earth masses in temperate zones of solar type stars. We show that the radial velocity depends heavily on spot distribution. Our results emphasize that understanding stellar magnetic activity and spot distribution is crucial for detection of Earth analogues.Peer reviewe

    PEXO : a global modeling framework for nanosecond timing, microsecond astrometry, and μm/s radial velocities

    Get PDF
    54 pages, 2 tables, 19 figures, accepted for publication in ApJS, PEXO is available at https://github.com/phillippro/pexoThe ability to make independent detections of the signatures of exoplanets with complementary telescopes and instruments brings a new potential for robust identification of exoplanets and precision characterization. We introduce PEXO, a package for Precise EXOplanetology to facilitate the efficient modeling of timing, astrometry, and radial velocity data, which will benefit not only exoplanet science but also various astrophysical studies in general. PEXO is general enough to account for binary motion and stellar reflex motions induced by planetary companions and is precise enough to treat various relativistic effects both in the solar system and in the target system. We also model the post-Newtonian barycentric motion for future tests of general relativity in extrasolar systems. We benchmark PEXO with the pulsar timing package TEMPO2 and find that PEXO produces numerically similar results with timing precision of about 1 ns, space-based astrometry to a precision of 1{\mu}as, and radial velocity of 1 {\mu}m/s and improves on TEMPO2 for decade-long timing data of nearby targets, due to its consideration of third-order terms of Roemer delay. PEXO is able to avoid the bias introduced by decoupling the target system and the solar system and to account for the atmospheric effects which set a practical limit for ground-based radial velocities close to 1 cm/s. Considering the various caveats in barycentric correction and ancillary data required to realize cm/s modeling, we recommend the preservation of original observational data. The PEXO modeling package is available at GitHub (https://github.com/phillippro/pexo).Peer reviewe
    corecore