26 research outputs found

    Investigating a genetic link between Alzheimer’s Disease and CADASIL related Cerebral Small Vessel Disease

    Get PDF
    Monogenic forms of Alzheimer’s disease (AD) have been identified through mutations in genes such as APP, PSEN1, and PSEN2, whilst other genetic markers such as the APOE ε carrier allele status have been shown to increase the likelihood of having the disease. Mutations in these genes are not limited to AD, as APP mutations can also cause an amyloid form of cerebral small vessel disease (CSVD) known as cerebral amyloid angiopathy, whilst PSEN1 and PSEN2 are involved in NOTCH3 signalling, a process known to be dysregulated in the monogenic CSVD, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). The overlap between AD genes and causes of CSVD led to the hypothesis that mutations in other genes within the PANTHER AD–presenilin pathway may be novel causes of CSVD in a cohort of clinically suspicious CADASIL patients without a pathogenic NOTCH3 mutation. To investigate this, whole exome sequencing was performed on 50 suspected CADASIL patients with no NOTCH3 mutations, and a targeted gene analysis was completed on the PANTHER. ERN1 was identified as a novel candidate CSVD gene following predicted pathogenic gene mutation analysis. Rare variant burden testing failed to identify an association with any gene; however, it did show a nominally significant link with ERN1 and TRPC3. This study provides evidence to support a genetic overlap between CSVD and Alzheimer’s disease.</p

    Exonic mutations in cell–cell adhesion may contribute to CADASIL-related CSVD pathology

    Get PDF
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a condition caused by mutations in NOTCH3 and results in a phenotype characterised by recurrent strokes, vascular dementia and migraines. Whilst a genetic basis for the disease is known, the molecular mechanisms underpinning the pathology of CADASIL are still yet to be determined. Studies conducted at the Genomics Research Centre (GRC) have also identified that only 15–23% of individuals clinically suspected of CADASIL have mutations in NOTCH3. Based on this, whole exome sequencing was used to identify novel genetic variants for CADASIL-like cerebral small-vessel disease (CSVD). Analysis of functionally important variants in 50 individuals was investigated using overrepresentation tests in Gene ontology software to identify biological processes that are potentially affected in this group of patients. Further investigation of the genes in these processes was completed using the TRAPD software to identify if there is an increased number (burden) of mutations that are associated with CADASIL-like pathology. Results from this study identified that cell–cell adhesion genes were positively overrepresented in the PANTHER GO-slim database. TRAPD burden testing identified n = 15 genes that had a higher number of rare (MAF 0.8) mutations compared to the gnomAD v2.1.1 exome control dataset. Furthermore, these results identified ARVCF, GPR17, PTPRS, and CELSR1 as novel candidate genes in CADASIL-related pathology. This study identified a novel process that may be playing a role in the vascular damage related to CADASIL-related CSVD and implicated n = 15 genes in playing a role in the disease.</p

    Whole-Exome Sequencing Implicates SCN2A in Episodic Ataxia, but Multiple Ion Channel Variants May Contribute to Phenotypic Complexity

    No full text
    Although the clinical use of targeted gene sequencing-based diagnostics is valuable, whole-exome sequencing has also emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. Molecular genetic tests for episodic ataxia type 2 (EA2) usually target only the specific calcium channel gene (CACNA1A) that is known to cause EA2. In cases where no mutations are identified in the CACNA1A gene, it is important to identify the causal gene so that more effective treatment can be prioritized for patients. Here we present a case of a proband with a complex episodic ataxias (EA)/seizure phenotype with an EA-affected father; and an unaffected mother, all negative for CACNA1A gene mutations. The trio was studied by whole-exome sequencing to identify candidate genes responsible for causing the complex EA/seizure phenotype. Three rare or novel variants in Sodium channel &alpha;2-subunit; SCN2A (c.3973G&gt;T: p.Val1325Phe), Potassium channel, Kv3.2; KCNC2 (c.1006T&gt;C: p.Ser336Pro) and Sodium channel Nav1.6; SCN8A (c.3421C&gt;A: p.Pro1141Thr) genes were found in the proband. While the SCN2A variant is likely to be causal for episodic ataxia, each variant may potentially contribute to the phenotypes observed in this family. This study highlights that a major challenge of using whole-exome/genome sequencing is the identification of the unique causative mutation that is associated with complex disease

    Development of high through-put neurogenetics diagnostics

    No full text
    This project was an effort to improve the speed and affordability of genetic testing for neurological disorders. The research involved the development of a genetic diagnostic testing technique using Next Generation Sequencing technologies to investigate Familial Hemiplegic Migraine and related neurological conditions. The method successfully expanded the scope of testing, resulting in the ability to detect genetic changes that would have gone unnoticed in previous tests and significantly reduced the cost of testing for patients and the healthcare system

    Genome sequencing in esophageal squamous cell carcinoma

    No full text
    Technological advances in the form of next-generation sequencing allow sequencing of large numbers of different DNA sequences in a single/parallel reaction compared to conventional sequencing. It is a powerful tool which has enabled comprehensive characterization of esophageal squamous cell carcinoma. Whole-genome sequencing is the most comprehensive but expensive, whereas whole-exome sequencing is cost-effective, but it only works for the known genes. Thus, second-generation sequencing methods can provide a complete picture of the esophageal squamous cell carcinoma genome by detecting and discovering different type of alterations in the cancer which may lead to the development of effective diagnostic and therapeutic approaches for esophageal squamous cell carcinoma

    Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients

    Get PDF
    BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. RESULTS Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. CONCLUSIONS NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients

    Next generation sequencing identifies novel CACNA1A gene mutations in Episodic Ataxia type 2

    No full text
    Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilised Next Generation Sequencing (NGS) to screen the coding sequence, exon-intron boundaries and UTRs of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which 9 were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening

    Additional file 2: Table S2. of Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients

    No full text
    Overview of clinical data for patients tested using the NGS panel with a clinical diagnosis of CADASIL. (DOC 59 kb

    Whole-Exome Sequencing Implicates SCN2A in Episodic Ataxia, but Multiple Ion Channel Variants May Contribute to Phenotypic Complexity

    No full text
    Although the clinical use of targeted gene sequencing-based diagnostics is valuable, whole-exome sequencing has also emerged as a successful diagnostic tool in molecular genetics laboratories worldwide. Molecular genetic tests for episodic ataxia type 2 (EA2) usually target only the specific calcium channel gene (CACNA1A) that is known to cause EA2. In cases where no mutations are identified in the CACNA1A gene, it is important to identify the causal gene so that more effective treatment can be prioritized for patients. Here we present a case of a proband with a complex episodic ataxias (EA)/seizure phenotype with an EA-affected father; and an unaffected mother, all negative for CACNA1A gene mutations. The trio was studied by whole-exome sequencing to identify candidate genes responsible for causing the complex EA/seizure phenotype. Three rare or novel variants in Sodium channel &alpha;2-subunit; SCN2A (c.3973G&gt;T: p.Val1325Phe), Potassium channel, Kv3.2; KCNC2 (c.1006T&gt;C: p.Ser336Pro) and Sodium channel Nav1.6; SCN8A (c.3421C&gt;A: p.Pro1141Thr) genes were found in the proband. While the SCN2A variant is likely to be causal for episodic ataxia, each variant may potentially contribute to the phenotypes observed in this family. This study highlights that a major challenge of using whole-exome/genome sequencing is the identification of the unique causative mutation that is associated with complex disease
    corecore