389 research outputs found

    Expression and Localization of Glycosaminoglycans/Proteoglycan in Pterygium: An Immunohistochemical Study

    Get PDF
    Pterygium is a triangle-shaped fibrovascular hyperplasia of the bulbar conjunctiva on the cornea. The purpose of this study was to analyze Proteoglycans (PGs) by Immunohistochemistry (IHC) in pterygium tissues and to compare the results with normal conjunctiva. Twenty-four patients (14 males) undergoing primary pterygium excision and 17 healthy individuals (10 males), undergoing extracapsular cataract surgery, were included. Pterygium tissues and normal conjunctiva tissues were surgically removed. The tissue sections were fixed in 2% paraformaldehyde and incubated with monoclonal antibodies against PGs anti-mouse IgG. Immunohistochemical study showed stronger expression of keratan sulfate in the stroma of the pterygium compared to normal conjunctiva. An increased expression of heparan sulfate was observed in the epithelial layer and around the pterygium vessels. On the other hand, dermatan sulfate showed an increased expression and localization not only in the sub-epithelial area of the pterygium and normal conjunctiva, yet throughout the stroma of the pterygium. The differences in the expression and localization of the studied extracellular matrix proteoglycans in the pterygium tissue compared to normal conjunctiva may explain the tissue hyperplasia, structure, and the functional properties in pterygium

    Dynamical simulation of transport in one-dimensional quantum wires

    Full text link
    Transport of single-channel spinless interacting fermions (Luttinger liquid) through a barrier has been studied by numerically exact quantum Monte Carlo methods. A novel stochastic integration over the real-time paths allows for direct computation of nonequilibrium conductance and noise properties. We have examined the low-temperature scaling of the conductance in the crossover region between a very weak and an almost insulating barrier.Comment: REVTex, 4 pages, 2 uuencoded figures (submitted to Phys. Rev. Lett.

    Iterative algorithm versus analytic solutions of the parametrically driven dissipative quantum harmonic oscillator

    Full text link
    We consider the Brownian motion of a quantum mechanical particle in a one-dimensional parabolic potential with periodically modulated curvature under the influence of a thermal heat bath. Analytic expressions for the time-dependent position and momentum variances are compared with results of an iterative algorithm, the so-called quasiadiabatic propagator path integral algorithm (QUAPI). We obtain good agreement over an extended range of parameters for this spatially continuous quantum system. These findings indicate the reliability of the algorithm also in cases for which analytic results may not be available a priori.Comment: 15 pages including 11 figures, one reference added, minor typos correcte
    • …
    corecore