33 research outputs found
RT-PCR Analysis of TOPBP1 Gene Expression in Hereditary Breast Cancer
Hereditary predisposition to breast cancer determined in large part by loss of function mutations in one of two genes BRCA1 and BRCA2. Besides BRCA1 and BRCA2 other genes are also likely to be involved in hereditary predisposition to breast cancer. TopBP1 protein is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Expression of TopBP1 gene at the mRNA level was analyzed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) in 94 samples of hereditary breast cancer. Analysis of TopBP1 mRNA level showed that expression of TopBP1 is significantly downregulated in poorly differentiated breast cancer (grade III according Bloom-Richardson system (P<0.05)
Metallothionein 2A genetic polymorphisms and risk of ductal breast cancer
Metallothioneins (MTs) are a family of metal binding proteins that play an important role in cellular processes such as proliferation and apoptosis. Metallothionein 2A is the most expressed MT isoform in the breast cells. A number of studies have demonstrated increased MT2A expression in various human tumors, including breast cancer. We carried out an association study to examine whether MT2A gene polymorphisms are associated with risk of breast cancer. Information on lifestyle risk factors was collected via a self-administered questionnaire. Genotyping was conducted using polymerase chain reaction–restriction fragment length polymorphism technique. Three single nucleotide polymorphisms (SNP) rs28366003, rs1610216 and rs10636 were genotyped in 534 breast cancer cases and 556 population controls. One SNP in MT2A (rs28366003) showed a positive association with breast cancer. Compared with homozygous common allele carriers, heterozygous for the G variant [odds ratio (OR) = 1.92, 95 % confidence interval (CI):1.28–2.81, p trend <0.01; the OR assuming a dominant model 1.93 (95 % CI: 1.29–2.89, p dominant <0.02) after adjustment for age, family history, smoking status, BMI, menarche, parity, menopausal status and use of contraceptive and menopausal hormones] had a significantly increased risk of breast cancer in Polish population, as well as women with haplotypes, including variant allele of rs28366003 SNP (OR = 1.58, CI: 0.41–6.33, p global = 0.03). Our data suggest that the rs28366003 SNP in MT2A is associated with risk of breast cancer in Polish population.This work was supported, in part, by the statutory
fund for the Department of Cytobiochemistry, University of
Łód
Association between the c.*229C>T polymorphism of the topoisomerase IIb binding protein 1 (TopBP1) gene and breast cancer
Topoisomerase IIb binding protein 1 (TopBP1)
is involved in cell survival, DNA replication, DNA damage
repair and cell cycle checkpoint control. The biological
function of TopBP1 and its close relation with BRCA1
prompted us to investigate whether alterations in the
TopBP1 gene can influence the risk of breast cancer.
The aim of this study was to examine the association
between five polymorphisms (rs185903567, rs116645643,
rs115160714, rs116195487, and rs112843513) located in
the 30UTR region of the TopBP1 gene and breast cancer
risk as well as allele-specific gene expression. Five hundred
thirty-four breast cancer patients and 556 population controls
were genotyped for these SNPs. Allele-specific Top-
BP1 mRNA and protein expressions were determined by
using real time PCR and western blotting methods,
respectively. Only one SNP (rs115160714) showed an
association with breast cancer. Compared to homozygous
common allele carriers, heterozygous and homozygous for
the T variant had significantly increased risk of breast
cancer (adjusted odds ratio = 3.81, 95 % confidence
interval: 1.63–8.34, p = 0.001). Mean TopBP1 mRNA and
protein expression were higher in the individuals with the
CT or TT genotype. There was a significant association
between the rs115160714 and tumor grade and stage. Most
carriers of minor allele had a high grade (G3) tumors
classified as T2-T4N1M0. Our study raises a possibility
that a genetic variation of TopBP1 may be implicated in
the etiology of breast cancer
Expression of TopBP1 in hereditary breast cancer
TopBP1 protein displays structural as well as functional similarities to BRCA1 and is involved in DNA replication, DNA damage checkpoint response and transcriptional regulation. Aberrant expression of TopBP1 may lead to genomic instability and can have pathological consequences. In this study we aimed to investigate expression of TopBP1 gene at mRNA and protein level in hereditary breast cancer. Real-time quantitative PCR was performed in 127 breast cancer samples. Expression of TopBP1 mRNA in lobular carcinoma was significantly lower compared with ductal carcinoma (p < 0.05). The level of TopBP1 mRNA appeared to be lower in poorly differentiated (III grade) hereditary breast cancer in comparison with moderately (II grade) and well-differentiated cancer (I grade) (p < 0.05 and p < 0.001 respectively). We analyzed TopBP1 protein expression using immunohistochemistry and Western blot techniques. Expression of TopBP1 protein was found to be significantly increased in poorly differentiated breast cancer (III grade) (p < 0.05). The percentage of samples with cytoplasmic apart from nuclear staining increased with increasing histological grade. There was no significant association between level and intracellular localization of TopBP1 protein in hereditary breast cancer and other clinicopathological parameters such as estrogen and progesterone receptors status, appearance of metastasis in the axillary lymph nodes and type of cancer. Our data suggest that decreased level of TopBP1 mRNA and increased level of TopBP1 protein might be associated with progression of hereditary breast cancer