150 research outputs found

    Coding region structural heterogeneity and turnover of transcription start sites contribute to divergence in expression between duplicate genes

    Get PDF
    Gene expression data for duplicated gene pairs in humans provides insights into the regulatory factors affecting the expression divergence of these genes and implications for their evolution

    A computational approach to candidate gene prioritization for X-linked mental retardation using annotation-based binary filtering and motif-based linear discriminatory analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several computational candidate gene selection and prioritization methods have recently been developed. These <it>in silico </it>selection and prioritization techniques are usually based on two central approaches - the examination of similarities to known disease genes and/or the evaluation of functional annotation of genes. Each of these approaches has its own caveats. Here we employ a previously described method of candidate gene prioritization based mainly on gene annotation, in accompaniment with a technique based on the evaluation of pertinent sequence motifs or signatures, in an attempt to refine the gene prioritization approach. We apply this approach to X-linked mental retardation (XLMR), a group of heterogeneous disorders for which some of the underlying genetics is known.</p> <p>Results</p> <p>The gene annotation-based binary filtering method yielded a ranked list of putative XLMR candidate genes with good plausibility of being associated with the development of mental retardation. In parallel, a motif finding approach based on linear discriminatory analysis (LDA) was employed to identify short sequence patterns that may discriminate XLMR from non-XLMR genes. High rates (>80%) of correct classification was achieved, suggesting that the identification of these motifs effectively captures genomic signals associated with XLMR vs. non-XLMR genes. The computational tools developed for the motif-based LDA is integrated into the freely available genomic analysis portal Galaxy (<url>http://main.g2.bx.psu.edu/</url>). Nine genes (<it>APLN</it>, <it>ZC4H2</it>, <it>MAGED4</it>, <it>MAGED4B</it>, <it>RAP2C</it>, <it>FAM156A</it>, <it>FAM156B</it>, <it>TBL1X</it>, and <it>UXT</it>) were highlighted as highly-ranked XLMR methods.</p> <p>Conclusions</p> <p>The combination of gene annotation information and sequence motif-orientated computational candidate gene prediction methods highlight an added benefit in generating a list of plausible candidate genes, as has been demonstrated for XLMR.</p> <p><it>Reviewers: This article was reviewed by Dr Barbara Bardoni (nominated by Prof Juergen Brosius); Prof Neil Smalheiser and Dr Dustin Holloway (nominated by Prof Charles DeLisi).</it></p

    Rapid and asymmetric divergence of duplicate genes in the human gene coexpression network

    Get PDF
    BACKGROUND: While gene duplication is known to be one of the most common mechanisms of genome evolution, the fates of genes after duplication are still being debated. In particular, it is presently unknown whether most duplicate genes preserve (or subdivide) the functions of the parental gene or acquire new functions. One aspect of gene function, that is the expression profile in gene coexpression network, has been largely unexplored for duplicate genes. RESULTS: Here we build a human gene coexpression network using human tissue-specific microarray data and investigate the divergence of duplicate genes in it. The topology of this network is scale-free. Interestingly, our analysis indicates that duplicate genes rapidly lose shared coexpressed partners: after approximately 50 million years since duplication, the two duplicate genes in a pair have only slightly higher number of shared partners as compared with two random singletons. We also show that duplicate gene pairs quickly acquire new coexpressed partners: the average number of partners for a duplicate gene pair is significantly greater than that for a singleton (the latter number can be used as a proxy of the number of partners for a parental singleton gene before duplication). The divergence in gene expression between two duplicates in a pair occurs asymmetrically: one gene usually has more partners than the other one. The network is resilient to both random and degree-based in silico removal of either singletons or duplicate genes. In contrast, the network is especially vulnerable to the removal of highly connected genes when duplicate genes and singletons are considered together. CONCLUSION: Duplicate genes rapidly diverge in their expression profiles in the network and play similar role in maintaining the network robustness as compared with singletons. Contact: [email protected] Supplementary information: Please see additional files

    Oscillating Evolution of a Mammalian Locus with Overlapping Reading Frames: An XLαs/ALEX Relay

    Get PDF
    XLαs and ALEX are structurally unrelated mammalian proteins translated from alternative overlapping reading frames of a single transcript. Not only are they encoded by the same locus, but a specific XLαs/ALEX interaction is essential for G-protein signaling in neuroendocrine cells. A disruption of this interaction leads to abnormal human phenotypes, including mental retardation and growth deficiency. The region of overlap between the two reading frames evolves at a remarkable speed: the divergence between human and mouse ALEX polypeptides makes them virtually unalignable. To trace the evolution of this puzzling locus, we sequenced it in apes, Old World monkeys, and a New World monkey. We show that the overlap between the two reading frames and the physical interaction between the two proteins force the locus to evolve in an unprecedented way. Namely, to maintain two overlapping protein-coding regions the locus is forced to have high GC content, which significantly elevates its intrinsic evolutionary rate. However, the two encoded proteins cannot afford to change too quickly relative to each other as this may impair their interaction and lead to severe physiological consequences. As a result XLαs and ALEX evolve in an oscillating fashion constantly balancing the rates of amino acid replacements. This is the first example of a rapidly evolving locus encoding interacting proteins via overlapping reading frames, with a possible link to the origin of species-specific neurological differences

    Human-macaque comparisons illuminate variation in neutral substitution rates

    Get PDF
    The evolutionary distance between human and macaque is particularly attractive for investigating neutral substitution rates, which were calculated as a function of a number of genomic parameters

    Genomic Environment Predicts Expression Patterns on the Human Inactive X Chromosome

    Get PDF
    What genomic landmarks render most genes silent while leaving others expressed on the inactive X chromosome in mammalian females? To date, signals determining expression status of genes on the inactive X remain enigmatic despite the availability of complete genomic sequences. Long interspersed repeats (L1s), particularly abundant on the X, are hypothesized to spread the inactivation signal and are enriched in the vicinity of inactive genes. However, both L1s and inactive genes are also more prevalent in ancient evolutionary strata. Did L1s accumulate there because of their role in inactivation or simply because they spent more time on the rarely recombining X? Here we utilize an experimentally derived inactivation profile of the entire human X chromosome to uncover sequences important for its inactivation, and to predict expression status of individual genes. Focusing on Xp22, where both inactive and active genes reside within evolutionarily young strata, we compare neighborhoods of genes with different inactivation states to identify enriched oligomers. Occurrences of such oligomers are then used as features to train a linear discriminant analysis classifier. Remarkably, expression status is correctly predicted for 84% and 91% of active and inactive genes, respectively, on the entire X, suggesting that oligomers enriched in Xp22 capture most of the genomic signal determining inactivation. To our surprise, the majority of oligomers associated with inactivated genes fall within L1 elements, even though L1 frequency in Xp22 is low. Moreover, these oligomers are enriched in parts of L1 sequences that are usually underrepresented in the genome. Thus, our results strongly support the role of L1s in X inactivation, yet indicate that a chromatin microenvironment composed of multiple genomic sequence elements determines expression status of X chromosome genes

    A Macaque's-Eye View of Human Insertions and Deletions: Differences in Mechanisms

    Get PDF
    Insertions and deletions (indels) cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup) is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments
    corecore