27 research outputs found

    Edge Modes in the Intermediate-D and Large-D Phases of the S=2 Quantum Spin Chain with XXZ and On-Site Anisotropies

    Full text link
    We investigate the edge modes at T=0 in the intermediate-D (ID) phase and the large-D (LD) phase of the S=2 quantum spin chain with the XXZ anisotropy and the generalized on-site anisotropies by use of the DMRG. There exists a gapless edge mode in the ID phase, while no gapless edge mode in the LD phase. These results are consistent with the physical pictures of these phases. We also show the ground-state phase diagrams obtained by use of the exact diagonalization and the level spectroscopy analysis.Comment: Submitted to "Proceedings of the International Conference on Strongly Correlated Electron Systems (SCES2013)

    Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

    Get PDF
    The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is determined. It is found that the competition between the interactions stabilizes the dimer phase against the Haldane phase

    Ground-State Phase Diagram of an Anisotropic S=1 Ferromagnetic-Antiferromagnetic Bond-Alternating Chain

    Full text link
    By using mainly numerical methods, we investigate the ground-state phase diagram (GSPD) of an S=1S=1 ferromagnetic-antiferromagnetic bond-alternating chain with the XXZXXZ and the on-site anisotropies. This system can be mapped onto an anisotropic spin-2 chain when the ferromagnetic interaction is much stronger than the antiferromagnetic interaction. Since there are many quantum parameters in this system, we numerically obtained the GSPD on the plane of the magnitude of the antiferromagnetic coupling versus its XXZXXZ anisotropy, by use of the exact diagonalization, the level spectroscopy as well as the phenomenological renormalization group. The obtained GSPD consists of six phases. They are the XYXY1, the large-DD (LD), the intermediate-DD (ID), the Haldane (H), the spin-1 singlet dimer (SD), and the N\'eel phases. Among them, the LD, the H, and the SD phases are the trivial phases, while the ID phase is the symmetry-protected topological phase. The former three are smoothly connected without any quantum phase transitions. It is also emphasized that the ID phase appears in a wider region compared with the case of the GSPD of the anisotropic spin-2 chain with the XXZXXZ and the on-site anisotropies. We also compare the obtained GSPD with the result of the perturbation theory.Comment: to be published in JPS Conf. Se

    How to distinguish the Haldane/Large-D state and the intermediate-D state in an S=2 quantum spin chain with the XXZ and on-site anisotropies

    Full text link
    We numerically investigate the ground-state phase diagram of an S=2 quantum spin chain with the XXZXXZ and on-site anisotropies described by H=j(SjxSj+1x+SjySj+1y+ΔSjzSj+1z)+Dj(Sjz)2{\mathcal H}=\sum_j (S_j^x S_{j+1}^x+S_j^y S_{j+1}^y+\Delta S_j^z S_{j+1}^z) + D \sum_j (S_j^z)^2, where Δ\Delta denotes the XXZ anisotropy parameter of the nearest-neighbor interactions and DD the on-site anisotropy parameter. We restrict ourselves to the Δ>0\Delta>0 and D>0D>0 case for simplicity. Our main purpose is to obtain the definite conclusion whether there exists or not the intermediate-DD (ID) phase, which was proposed by Oshikawa in 1992 and has been believed to be absent since the DMRG studies in the latter half of 1990's. In the phase diagram with Δ>0\Delta>0 and D>0D>0 there appear the XY state, the Haldane state, the ID state, the large-DD (LD) state and the N\'eel state. In the analysis of the numerical data it is important to distinguish three gapped states; the Haldane state, the ID state and the LD state. We give a physical and intuitive explanation for our level spectroscopy method how to distinguish these three phases.Comment: Proceedings of "International Conference on Frustration in Condensed Matter (ICFCM)" (Jan. 11-14, 2011, Sendai, Japan

    Ground state of an S=1/2S=1/2 distorted diamond chain - model of Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2

    Full text link
    We study the ground state of the model Hamiltonian of the trimerized S=1/2S=1/2 quantum Heisenberg chain Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2 in which the non-magnetic ground state is observed recently. This model consists of stacked trimers and has three kinds of coupling constants between spins; the intra-trimer coupling constant J1J_1 and the inter-trimer coupling constants J2J_2 and J3J_3. All of these constants are assumed to be antiferromagnetic. By use of the analytical method and physical considerations, we show that there are three phases on the J~2J~3\tilde J_2 - \tilde J_3 plane (J~2J2/J1\tilde J_2 \equiv J_2/J_1, J~3J3/J1\tilde J_3 \equiv J_3/J_1), the dimer phase, the spin fluid phase and the ferrimagnetic phase. The dimer phase is caused by the frustration effect. In the dimer phase, there exists the excitation gap between the two-fold degenerate ground state and the first excited state, which explains the non-magnetic ground state observed in Cu3Cl6(H2O)22H8C4SO2\rm Cu_3 Cl_6 (H_2 O)_2 \cdot 2H_8 C_4 SO_2. We also obtain the phase diagram on the J~2J~3 \tilde J_2 - \tilde J_3 plane from the numerical diagonalization data for finite systems by use of the Lanczos algorithm.Comment: LaTeX2e, 15 pages, 21 eps figures, typos corrected, slightly detailed explanation adde

    Magnetic properties of the S=1/2S=1/2 distorted diamond chain at T=0

    Full text link
    We explore, at T=0, the magnetic properties of the S=1/2S=1/2 antiferromagnetic distorted diamond chain described by the Hamiltonian {\cal H} = \sum_{j=1}^{N/3}{J_1 ({\bi S}_{3j-1} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+1}) + J_2 {\bi S}_{3j+1} \cdot {\bi S}_{3j+2} + J_3 ({\bi S}_{3j-2} \cdot {\bi S}_{3j} + {\bi S}_{3j} \cdot {\bi S}_{3j+2})} \allowbreak - H \sum_{l=1}^{N} S_l^z with J1,J2,J30J_1, J_2, J_3\ge0, which well models A3Cu3(PO4)4{\rm A_3 Cu_3 (PO_4)_4} with A=Ca,Sr{\rm A = Ca, Sr}, Bi4Cu3V2O14{\rm Bi_4 Cu_3 V_2 O_{14}} and azurite Cu3(OH)2(CO3)2\rm Cu_3(OH)_2(CO_3)_2. We employ the physical consideration, the degenerate perturbation theory, the level spectroscopy analysis of the numerical diagonalization data obtained by the Lanczos method and also the density matrix renormalization group (DMRG) method. We investigate the mechanisms of the magnetization plateaux at M=Ms/3M=M_s/3 and M=(2/3)MsM=(2/3)M_s, and also show the precise phase diagrams on the (J2/J1,J3/J1)(J_2/J_1, J_3/J_1) plane concerning with these magnetization plateaux, where M=l=1NSlzM=\sum_{l=1}^{N} S_l^z and MsM_s is the saturation magnetization. We also calculate the magnetization curves and the magnetization phase diagrams by means of the DMRG method.Comment: 21 pages, 29 figure
    corecore