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The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating
nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are
antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the
ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-
neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is determined. It is
found that the competition between the interactions stabilizes the dimer phase against the Haldane phase.
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1. Introduction

The one-dimensional antiferromagnetic spin-1 Hei-
senberg system (the spin-1 Haldane system) has been
the subject of numerous theoretical and experimental
studies. These are motivated mainly by Haldane's pre-
diction [1] that the ground state of the integer-spin
case, in contrast to that of the half-integer-spin case,
is in a massive phase characterized by a finite gap in
the excitation spectrum and by an exponential decay
of the two-spin correlation functions. One of the recent
topics of this subject is the effect of the bond alterna-
tion on the ground-state properties of the system where
only the nearest-neighbor exchange interactions are as-
sumed. Several authors [2,3,4,5] have shown that, as
the bond-alternation parameter o (for the definition of
a, see Eq.(1) below) increases, a transition from the
Haldane phase to the dimer phase takes place at a fi-
nite critical value o = .. Another topic is the effect of
the antiferromagnetic next-nearest-neighbor exchange
interactions on the ground-state properties of the sys-
tem. Employing a method of exact diagonalization, two
of the present authors (T. T. and M. K.) and co-workers
[6,7] have demonstrated that the competition between
the nearest-neighbor and next-nearest-neighbor inter-
actions enhances the stability of the Haldane phase.
Shimaoka and Kuboki [8] have also obtained qualita-
tively the same result by use of a bosonization method.

In these circumstances we will discuss the ground-
state properties of the spin-1 Haldane system with
bond-alternating nearest-neighbor and uniform next-
nearest-neighbor exchange interactions. We express the
Hamiltonian which describes the system as

N
H=2y {1-(-1)a} &8
{=1

N
+2j (l—a)2§1'§l+21 (1)
1=1
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where 5'} is the spin-1 operator at the fth site; o
(0 < a <1) is the bond-alternation parameter of the
nearest-neighbor interactions; j (5 > 0) is the ratio of
the next-nearest-neighbor interaction comstant to the
nearest-neighbor one in the case of @ = 0; N is the
total number of spins in the system and is assumed
to be even. We impose periodic boundary conditions
(§l+N :5'}). It is noted that the nearest-neighbor and
next-nearest-neighbor interactions compete with each
other, since both are antiferromagnetic.

As was mentioned before, it has already been known
that, in the case of j =0, the Haldane to dimer phase
transition occurs at o = @.. According to a pioneer-
ing work by Singh and Gelfand [2], who have used a
series-expansion method, the value of o is given by
o = 0.25 £ 0.03. Recently, Kato and Tanaka [3] have
employed a density-matrix renormalization method [9]
to obtain o = 0.25 £ 0.01, and Nishiyama et al [4]
have analyzed the Binder parameter [10] associated
with string order [11], calculated by exact diagonaliza-
tions, to obtain o, =0.255 4 0.01. The results of more
recent quantum Monte Calro calculation performed by
Yamamoto [5] support these results. As can be seen
from Fig.1 in reference [3], the singlet-triplet energy
gap Ag(N) for finite N (N =8, 10, ---), which will
be defined by Eq.(5) below, has a minimum value at
o =0¢(N); the minimum value decreases monotonously
as N increases and vanishes at o = . in the thermo-
dynamic limit (N — oo) {12]. This is consistent with
Affleck and Haldane’s argument {13] that the ground
state of the system described by the Hamiltonian H
with 7=0 and with arbitrary spin magnitude S has 25
massless points in the range of —1 <o <1.

In the case of j =1/2, on the other hand, Shastry and
Sutherland [14] have shown that the following dimer

state:
Qdimer = [1a 2] [31 4] [57 6] [N_ 17 N] (2)

is an eigenstate of the Hamiltonian H and that the en-
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ergy eigenvalue Fgimer 18 given by

Egimer = —2N(1+0) . (3)
(We discuss more general cases in the Appendix.) In
Eq.(2) the symbol [£, £+ 1] denotes the normalized sin-
glet combination of spins Sl and S¢+1, and is explicitly
expressed as

[£, £+1] = ‘\;—g(alﬁl+l — (el + Brow) , (4

where oy, (;, and [, represent, respectively, the single-
spin states with S7 =1, 0, and —1. It is apparent that
the dimer state ®g;mer is a singlet state. Furthermore,
Shastry and Sutherland [14] have performed a varia-
tional calculation and have shown that ®g;per is the
ground state of the system at least when a >af**=1/3.
This suggests that also in the case of j=1/2, the Hal-
dane to dimer phase transition occurs at a critical value

¢ (O <o <a?r) of @, since the system is in the Hal-
dane phase when j=1/2 and a=0 [15].

In this paper we determine the ground-state phase
diagram on the j versus a plane, using a method of
exact diagonalization.

2. Numerical Results and Discussion

In order to determine the ground-state phase diagram
on the j versus o plane, we diagonalize the Hamiltonian
H for finite-size (N =6, 8, ---, 18) systems within the
subspace determined by the value M = Eiv___ISf (=0,
1, --+, N) and calculate the lowest energy eigenvalue
Eo(N,M) and the second-lowest one E(N,M).
these calculations we employ our computer program
package KOBEPACK/S coded by using a new coding
technique, developed by two of the present authors (M.
K. and T. T.) and Nishino [16], of the Lanczés method.
The results of our calculation show that the ground
state of the finite-size system belongs always to the
M =0 subspace and is a singlet state. In other words,
the ground-state energy is always given by Egy(N,0).
Thus, the singlet-triplet energy gap Ag(N), i.e., the
energy difference between the ground state and the low-
est state within the M =1 subspace, which belongs to
a triplet state, is defined as

Table 1: Values of a(N) for N=6, 8, - -+, 18 and that
of a, obtained for representative values of j. Note that,
when N =6 and j=0.0, the gap Ay (V) is an increasing
function of o in the region of 0.0<a<0.5.

= Eo(N, 1) — Eo(N,0) . (5)

Let us start with the discussion on the case of j=1/2.
According to the calculation, as the bond-alternation
parameter o decreases from 1, the ground state of the
finite-size system changes from the dimer state ®gjper
to another singlet state at o = ac(N). The values
of ac(N) for various N are listed in the seventh col-
umn in Table 1. Since they are almost independent of
N at least when N212, we can estimate rather accu-
rately the limiting (N — o0) value a. of a (V) to be
o =0.158340.0001. Asis expected, this value satisfies
0< <ol (=1/3). It is noted that, as shown in Fig1,
the gap Ag (V) takes a minimum value at oo =o(N),
the minimum value decreasing monotonously as N in-
creases.

Ag(N)

T T T T
Kxxx *
x —
1'0 xxx"x xxxx
52\ XxxXx Xxxx*
~— X
L ~ —
®
<j v
v
0.8 , .
"v, vy
v "v ,v" v
vvvvv'
500 o'.c:;
oOQ Yoo, ...;OOO
Q V. v (]
- (e} v °® OO
0.6 OO;". vavv . °;QQO
20, % o® o0Qa4
A0 % g 0* 00a%
“0 o® OAA _
“ A0o OOAA
A A
DA Aq
AKAA
0.4f . 1 N L L]
0.14 0.16 o 0.18

Figure 1: Plot of the singlet-triplet energy gap Agst(NV)
versus o for various values of N, calculated for y=0.5.
The symbols, X, ¥, V, @, O, A, and A, are for N =6,
8, 10, 12, 14, 16, and 18, respectively.

Figure 1 in reference [3] as well as Fig. 1 in this paper
suggests that, for arbitrary values of 7, the critical value

j=0.0 j=0.1 7=0.2 7=0.3 7j=0.4 j=0.5
ac(6) — 0.13270 0.16503 0.17356 0.16602 0.15762
OJC(S) 0.19129 0.20667 0.20785 0.19858 0.18138 0.16094
Olc(l()) 0.22674 0.22752 0.21995 0.20546 0.18528 0.15862
OIC(IQ) 0.24140 0.23607 0.22476 0.20830 0.18703 0.15824
ac(14) 0.24872 0.24021 0.22707 0.20972 0.18792 0.15830
Otc(16) 0.25278 0.24245 0.22831 0.21053 0.18840 0.15832
ac(18) 0.25520 0.24374 0.22904 0.21103 0.18869 0.15832

o 0.26040.01 0.247+0.01 0.232+0.01 0.2134+0.01 0.189+0.01 0.158340.0001
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Figure 2: Plot of the singlet-triplet energy gap Ag(N)
versus o for various values of N, calculated for 7 =0.3.
The symbols, x, ¥, v, @, O, A, and A, are for N =86,
8, 10, 12, 14, 16, and 18, respectively.

0.20

Figure 3: Plot of a.(N) versus 1/N for representative
values of 7. The symbols, @, O, X, A, and A are
for 5 = 0.0, 0.1, 0.2, 0.3, and 0.4, respectively. The
solid lines illustrate the extrapolation of ac(12), a.(14),
ac(16), and a(18) to N - 0o, the procedure of which
is discussed in the text.

a¢ of o at which the Haldane to dimer phase transition
occurs, can be estimated by extrapolating to the N — oo
limit the value a(N) of a which yields the minimum
of Ag(N). As an example, we show in Fig.2 the a-
dependence of a((N) for N =6, 8, ---, 18 calculated
for 7 =0.3. The values of Ag(N) obtained for j = 0.0,
0.1, 0.2, 0.3, and 0.4 are tabulated, respectively, in the
second to sixth columns in Table 1, and are plotted as
functions of 1/N in Fig.3. In order to estimate a., we
make a fit of 0(12), ac(14), ac(16), and o (18) to a
cubic function of 1/N, i.e.,

C1 C2 C3
aC(N):ac+N+m+J_V—3_ (6)
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Figure 4: The ground-state phase diagram on the j
versus o plane.
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with numerical constants ¢, cg, and c3. This fitting is
illustrated in Fig. 3, and the results for o, are tabulated
in Table 1. It is noted that our result in the case of j=0
agrees with the above-mentioned previous results [2,3,4]
within the numerical uncertainties.

Figure 4 shows our result for the ground-state phase
diagram on the j versus o plane, where the phase
boundary line between the Haldane and dimer phases
is obtained by connecting smoothly the estimated val-
ues of o, as a function of j. It is clearly seen that the
competition between the nearest-nearest-neighbor and
next-nearest-neighbor interactions stabilizes the dimer
phase against the Haldane phase, as far as the region
of 0<7<1/2 is concerned.

3. Concluding Remarks

We have determined the ground-state phase diagram
on the j versus a plane of the system described by the
Hamiltonian H, analyzing in the case of ; = 1/2 the
finite-size results for the ground-state energy Eo(N, 0)
and in the case of 0 < j < 1/2 those for the singlet-
triplet energy gap Ag(N). In order to estimate more
accurately the critical value o, in the latter case, it is
necessary to carry out more studies of various phys-
ical quantities related to the ground-state eigenfunc-
tion. One of the quantities is the Binder parameter
associated with string order which has been discussed
by Nishiyama et al [4] in the case of j = 0. Other
important quantities are, we believe, the antiferromag-
netic equal-time structure factor, which diverges in the
N — o0 limit at least when j =0 [2], and also the Binder
parameter associated with dimer order. The results of
these studies as well as that of the study of how does
o behave as a function of 7 in the case of 7 >1/2 will
be published in the near future.

The present study suggests that in the spin-1 case,
Affleck and Haldane'’s argument [13] holds even when
7 >0, although it is not clear at present whether the
limiting value Ag(oo) of the singlet-triplet energy gap
vanishes at o = a, or not. Both clarifying this and ex-
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tending the present study to the larger spin-magnitude
cases are left for future investigations.
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Appendix

Throughout this appendix, we assume that the mag-
nitude of the spin operator S; takes an arbitrary value
S(=1/2,1,3/2, ---). Let us consider the Hamiltonian,

N/2
Hs =2 Z {(J)\2 + J'A'Z)gzz-l - S
{=1

+(J + J’)§2( - St
+T821 - Spegr + J' S - §21+2} , (7)

where the first two terms in the braces represent the
nearest-neighbor interactions and the third and fourth
terms in the braces represent the next-nearest-neighbor
ones; the total number N of spins is assumed to be even.
We rewrite this Hamiltonian in the following form:

N/2 )
Hs = JZ [{)\(521—1 + Su) + »5'21+1/)\}
{=1
-2)%28(S+1) - S(5+ 1)//\2]

N/2

Y [{§2¢/A’ + X (Sa041 + Saeaa) }2

=1

—2X28(S +1) - S(S +1) //\'2] (8)

Then, by using the relation,
(Sze—1 + S20)[2¢ -1, 2 =0, (9)

it is easy to see that ®gimer given by Eq. (2) is an eigen-
state of Hg with the energy eigenvalue

Egimes = —NS(S+1)(JX>+ JA?) . (10)

The symbol [2—1, 2] in Eq.(9) and in the expression
of ®gimer stands for the normalized singlet combination
of two spins 5’21_1 and gz[ with magnitude S. In the
special case where J=J'=(1—0a)/2 and JA2 + J'A?=
1+ o, the Hamiltonian Hg is reduced to the Hamil-
tonian H, given by Eq. (1), with j =1/2. It is noted that
Shastry and Sutherland’s variational calculation [14]
leads to the result that in the above special case, @gimer
becomes the ground state of the system described by
‘Hs for S>1 at least when a>a?* =5/(2+5).
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