

Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

著者	Tonegawa Takashi, Kaburagi Makoto, Nakao					
	Takeshi					
journal or	Science reports of the Research Institutes,					
publication title	Tohoku University. Ser. A, Physics, chemistry					
	and metallurgy					
volume	40					
number	2					
page range	239-242					
year	1995-03-20					
URL	http://hdl.handle.net/10097/28532					

Haldane to Dimer Phase Transition in the Spin-1 Haldane System with Bond-Alternating Nearest-Neighbor and Uniform Next-Nearest-Neighbor Exchange Interactions

Takashi Tonegawa, Makoto Kaburagi ¹ and Takeshi Nakao Department of Physics, Faculty of Science, Kobe University, Rokkodai, Kobe 657 ¹Faculty of Cross-Cultural Studies, Kobe University, Tsurukabuto, Nada, Kobe 657

(Received November 14, 1994)

The Haldane to dimer phase transition is studied in the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform next-nearest-neighbor exchange interactions, where both interactions are antiferromagnetic and thus compete with each other. By using a method of exact diagonalization, the ground-state phase diagram on the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one versus the bond-alternation parameter of the nearest-neighbor interactions is determined. It is found that the competition between the interactions stabilizes the dimer phase against the Haldane phase. KEYWORDS: spin-1 Haldane system, Haldane to dimer phase transition, bond alternation, competing exchange interaction, ground-state phase diagram

1. Introduction

The one-dimensional antiferromagnetic spin-1 Heisenberg system (the spin-1 Haldane system) has been the subject of numerous theoretical and experimental studies. These are motivated mainly by Haldane's prediction [1] that the ground state of the integer-spin case, in contrast to that of the half-integer-spin case, is in a massive phase characterized by a finite gap in the excitation spectrum and by an exponential decay of the two-spin correlation functions. One of the recent topics of this subject is the effect of the bond alternation on the ground-state properties of the system where only the nearest-neighbor exchange interactions are assumed. Several authors [2,3,4,5] have shown that, as the bond-alternation parameter α (for the definition of α , see Eq.(1) below) increases, a transition from the Haldane phase to the dimer phase takes place at a finite critical value $\alpha = \alpha_c$. Another topic is the effect of the antiferromagnetic next-nearest-neighbor exchange interactions on the ground-state properties of the system. Employing a method of exact diagonalization, two of the present authors (T. T. and M. K.) and co-workers [6,7] have demonstrated that the competition between the nearest-neighbor and next-nearest-neighbor interactions enhances the stability of the Haldane phase. Shimaoka and Kuboki [8] have also obtained qualitatively the same result by use of a bosonization method.

In these circumstances we will discuss the groundstate properties of the spin-1 Haldane system with bond-alternating nearest-neighbor and uniform nextnearest-neighbor exchange interactions. We express the Hamiltonian which describes the system as

$$\mathcal{H} = 2 \sum_{\ell=1}^{N} \left\{ 1 - (-1)^{\ell} \alpha \right\} \vec{S}_{\ell} \cdot \vec{S}_{\ell+1} + 2j \left(1 - \alpha \right) \sum_{\ell=1}^{N} \vec{S}_{\ell} \cdot \vec{S}_{\ell+2} , \qquad (1)$$

where \vec{S}_{ℓ} is the spin-1 operator at the ℓ th site; α $(0 \le \alpha \le 1)$ is the bond-alternation parameter of the nearest-neighbor interactions; j $(j \ge 0)$ is the ratio of the next-nearest-neighbor interaction constant to the nearest-neighbor one in the case of $\alpha = 0$; N is the total number of spins in the system and is assumed to be even. We impose periodic boundary conditions $(\vec{S}_{\ell+N} = \vec{S}_{\ell})$. It is noted that the nearest-neighbor and next-nearest-neighbor interactions compete with each other, since both are antiferromagnetic.

As was mentioned before, it has already been known that, in the case of j = 0, the Haldane to dimer phase transition occurs at $\alpha = \alpha_c$. According to a pioneering work by Singh and Gelfand [2], who have used a series-expansion method, the value of α_c is given by $\alpha_c = 0.25 \pm 0.03$. Recently, Kato and Tanaka [3] have employed a density-matrix renormalization method [9] to obtain $\alpha_c = 0.25 \pm 0.01$, and Nishiyama et al. [4] have analyzed the Binder parameter [10] associated with string order [11], calculated by exact diagonalizations, to obtain $\alpha_c = 0.255 \pm 0.01$. The results of more recent quantum Monte Calro calculation performed by Yamamoto [5] support these results. As can be seen from Fig. 1 in reference [3], the singlet-triplet energy gap $\Delta_{st}(N)$ for finite N $(N = 8, 10, \cdots)$, which will be defined by Eq. (5) below, has a minimum value at $\alpha = \alpha_{\rm c}(N)$; the minimum value decreases monotonously as N increases and vanishes at $\alpha = \alpha_c$ in the thermodynamic limit $(N \to \infty)$ [12]. This is consistent with Affleck and Haldane's argument [13] that the ground state of the system described by the Hamiltonian ${\cal H}$ with j=0 and with arbitrary spin magnitude S has 2Smassless points in the range of $-1 \le \alpha \le 1$.

In the case of j=1/2, on the other hand, Shastry and Sutherland [14] have shown that the following dimer state:

$$\Phi_{\text{dimer}} = [1, 2] [3, 4] [5, 6] \cdots [N-1, N]$$
 (2)

is an eigenstate of the Hamiltonian ${\cal H}$ and that the en-

ergy eigenvalue E_{dimer} is given by

$$E_{\text{dimer}} = -2N(1+\alpha) . \tag{3}$$

(We discuss more general cases in the Appendix.) In Eq. (2) the symbol $[\ell, \ell+1]$ denotes the normalized singlet combination of spins \vec{S}_{ℓ} and $\vec{S}_{\ell+1}$, and is explicitly expressed as

$$[\ell, \ \ell+1] = \frac{1}{\sqrt{3}} \left(\alpha_{\ell} \beta_{\ell+1} - \zeta_{\ell} \zeta_{\ell+1} + \beta_{\ell} \alpha_{\ell+1} \right) , \quad (4)$$

where α_{ℓ} , ζ_{ℓ} , and β_{ℓ} represent, respectively, the single-spin states with $S_{\ell}^z=1$, 0, and -1. It is apparent that the dimer state Φ_{dimer} is a singlet state. Furthermore, Shastry and Sutherland [14] have performed a variational calculation and have shown that Φ_{dimer} is the ground state of the system at least when $\alpha \geq \alpha_{\text{c}}^{\text{var}}=1/3$. This suggests that also in the case of j=1/2, the Haldane to dimer phase transition occurs at a critical value α_{c} ($0 < \alpha_{\text{c}} < \alpha_{\text{c}}^{\text{var}}$) of α , since the system is in the Haldane phase when j=1/2 and $\alpha=0$ [15].

In this paper we determine the ground-state phase diagram on the j versus α plane, using a method of exact diagonalization.

2. Numerical Results and Discussion

In order to determine the ground-state phase diagram on the j versus α plane, we diagonalize the Hamiltonian \mathcal{H} for finite-size $(N=6, 8, \dots, 18)$ systems within the subspace determined by the value $M = \sum_{\ell=1}^{N} S_{\ell}^{z}$ (= 0, $1, \dots, N$) and calculate the lowest energy eigenvalue $E_0(N,M)$ and the second-lowest one $E_1(N,M)$. In these calculations we employ our computer program package KOBEPACK/S coded by using a new coding technique, developed by two of the present authors (M. K. and T. T.) and Nishino [16], of the Lanczös method. The results of our calculation show that the ground state of the finite-size system belongs always to the M=0 subspace and is a singlet state. In other words, the ground-state energy is always given by $E_0(N,0)$. Thus, the singlet-triplet energy gap $\Delta_{st}(N)$, i.e., the energy difference between the ground state and the lowest state within the M=1 subspace, which belongs to a triplet state, is defined as

Table 1: Values of $\alpha_c(N)$ for N=6, 8, ..., 18 and that of α_c , obtained for representative values of j. Note that, when N=6 and j=0.0, the gap $\Delta_{\rm st}(N)$ is an increasing function of α in the region of $0.0 \le \alpha \le 0.5$.

$$\Delta_{\rm st}(N) = E_0(N,1) - E_0(N,0) . \tag{5}$$

Let us start with the discussion on the case of j=1/2. According to the calculation, as the bond-alternation parameter α decreases from 1, the ground state of the finite-size system changes from the dimer state Φ_{dimer} to another singlet state at $\alpha = \alpha_{\text{c}}(N)$. The values of $\alpha_{\text{c}}(N)$ for various N are listed in the seventh column in Table 1. Since they are almost independent of N at least when $N \ge 12$, we can estimate rather accurately the limiting $(N \to \infty)$ value α_{c} of $\alpha_{\text{c}}(N)$ to be $\alpha_{\text{c}} = 0.1583 \pm 0.0001$. As is expected, this value satisfies $0 < \alpha_{\text{c}} < \alpha_{\text{c}}^{\text{var}}(=1/3)$. It is noted that, as shown in Fig 1, the gap $\Delta_{\text{st}}(N)$ takes a minimum value at $\alpha = \alpha_{\text{c}}(N)$, the minimum value decreasing monotonously as N increases.

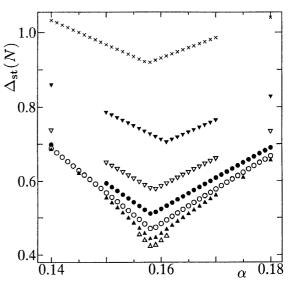


Figure 1: Plot of the singlet-triplet energy gap $\Delta_{\rm st}(N)$ versus α for various values of N, calculated for j=0.5. The symbols, \times , ∇ , ∇ , \bigcirc , \bigcirc , \triangle , and \triangle , are for N=6, 8, 10, 12, 14, 16, and 18, respectively.

Figure 1 in reference [3] as well as Fig. 1 in this paper suggests that, for arbitrary values of j, the critical value

	j = 0.0	j = 0.1	j = 0.2	j = 0.3	j = 0.4	j = 0.5
$\alpha_{\rm c}(6)$		0.13270	0.16503	0.17356	0.16602	0.15762
$\alpha_{c}(8)$	0.19129	0.20667	0.20785	0.19858	0.18138	0.16094
$\alpha_{\rm c}(10)$	0.22674	0.22752	0.21995	0.20546	0.18528	0.15862
$\alpha_{\rm c}(12)$	0.24140	0.23607	0.22476	0.20830	0.18703	0.15824
$\alpha_{\rm c}(14)$	0.24872	0.24021	0.22707	0.20972	0.18792	0.15830
$\alpha_{\rm c}(16)$	0.25278	0.24245	0.22831	0.21053	0.18840	0.15832
$\alpha_{\mathbf{c}}(18)$	0.25520	0.24374	0.22904	0.21103	0.18869	0.15832
$\alpha_{\rm c}$	0.260 ± 0.01	0.247 ± 0.01	0.232 ± 0.01	0.213 ± 0.01	0.189 ± 0.01	0.1583 ± 0.0001

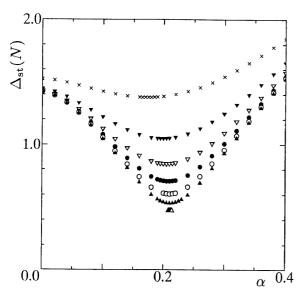


Figure 2: Plot of the singlet-triplet energy gap $\Delta_{\rm st}(N)$ versus α for various values of N, calculated for j=0.3. The symbols, \times , ∇ , ∇ , \bullet , \bullet , \bullet , and Δ , are for N=6, 8, 10, 12, 14, 16, and 18, respectively.

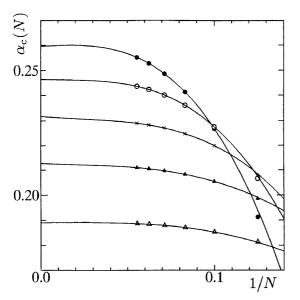


Figure 3: Plot of $\alpha_{\rm c}(N)$ versus 1/N for representative values of j. The symbols, \bigcirc , \bigcirc , \times , \triangle , and \triangle are for $j=0.0,\ 0.1,\ 0.2,\ 0.3,\ {\rm and}\ 0.4,\ {\rm respectively.}$ The solid lines illustrate the extrapolation of $\alpha_{\rm c}(12),\ \alpha_{\rm c}(14),\ \alpha_{\rm c}(16),\ {\rm and}\ \alpha_{\rm c}(18)$ to $N\to\infty$, the procedure of which is discussed in the text.

 $\alpha_{\rm c}$ of α at which the Haldane to dimer phase transition occurs, can be estimated by extrapolating to the $N\to\infty$ limit the value $\alpha_{\rm c}(N)$ of α which yields the minimum of $\Delta_{\rm st}(N)$. As an example, we show in Fig. 2 the α -dependence of $\alpha_{\rm c}(N)$ for $N=6,~8,~\cdots,~18$ calculated for j=0.3. The values of $\Delta_{\rm st}(N)$ obtained for j=0.0,~0.1,~0.2,~0.3,~ and 0.4 are tabulated, respectively, in the second to sixth columns in Table 1, and are plotted as functions of 1/N in Fig. 3. In order to estimate $\alpha_{\rm c}$, we make a fit of $\alpha_{\rm c}(12),~\alpha_{\rm c}(14),~\alpha_{\rm c}(16),~$ and $\alpha_{\rm c}(18)$ to a cubic function of 1/N,~ i.e.,

$$\alpha_{\rm c}(N) = \alpha_{\rm c} + \frac{c_1}{N} + \frac{c_2}{N^2} + \frac{c_3}{N^3}$$
 (6)

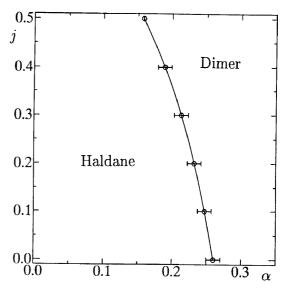


Figure 4: The ground-state phase diagram on the j versus α plane.

with numerical constants c_1 , c_2 , and c_3 . This fitting is illustrated in Fig. 3, and the results for α_c are tabulated in Table 1. It is noted that our result in the case of j=0 agrees with the above-mentioned previous results [2,3,4] within the numerical uncertainties.

Figure 4 shows our result for the ground-state phase diagram on the j versus α plane, where the phase boundary line between the Haldane and dimer phases is obtained by connecting smoothly the estimated values of α_c as a function of j. It is clearly seen that the competition between the nearest-nearest-neighbor and next-nearest-neighbor interactions stabilizes the dimer phase against the Haldane phase, as far as the region of $0 \le j \le 1/2$ is concerned.

3. Concluding Remarks

We have determined the ground-state phase diagram on the j versus α plane of the system described by the Hamiltonian \mathcal{H} , analyzing in the case of j=1/2 the finite-size results for the ground-state energy $E_0(N,0)$ and in the case of $0 \le j < 1/2$ those for the singlettriplet energy gap $\Delta_{\rm st}(N)$. In order to estimate more accurately the critical value α_c in the latter case, it is necessary to carry out more studies of various physical quantities related to the ground-state eigenfunction. One of the quantities is the Binder parameter associated with string order which has been discussed by Nishiyama et al. [4] in the case of j = 0. Other important quantities are, we believe, the antiferromagnetic equal-time structure factor, which diverges in the $N \to \infty$ limit at least when j = 0 [2], and also the Binder parameter associated with dimer order. The results of these studies as well as that of the study of how does $\alpha_{\rm c}$ behave as a function of j in the case of j > 1/2 will be published in the near future.

The present study suggests that in the spin-1 case, Affleck and Haldane's argument [13] holds even when j > 0, although it is not clear at present whether the limiting value $\Delta_{\rm st}(\infty)$ of the singlet-triplet energy gap vanishes at $\alpha = \alpha_{\rm c}$ or not. Both clarifying this and ex-

tending the present study to the larger spin-magnitude cases are left for future investigations.

Acknowledgment

This work has been supported in part by a Grant-in-Aid for Scientific Research on Priority Areas, 'Computational Physics as a New Frontier in Condensed Matter Research', from the Ministry of Education, Science and Culture.

Appendix

Throughout this appendix, we assume that the magnitude of the spin operator \vec{S}_{ℓ} takes an arbitrary value $S(=1/2, 1, 3/2, \cdots)$. Let us consider the Hamiltonian,

$$\mathcal{H}_{S} = 2 \sum_{\ell=1}^{N/2} \left\{ \left(J \lambda^{2} + J' \lambda'^{2} \right) \vec{S}_{2\ell-1} \cdot \vec{S}_{2\ell} + \left(J + J' \right) \vec{S}_{2\ell} \cdot \vec{S}_{2\ell+1} + J \vec{S}_{2\ell-1} \cdot \vec{S}_{2\ell+1} + J' \vec{S}_{2\ell} \cdot \vec{S}_{2\ell+2} \right\}, \quad (7)$$

where the first two terms in the braces represent the nearest-neighbor interactions and the third and fourth terms in the braces represent the next-nearest-neighbor ones; the total number N of spins is assumed to be even. We rewrite this Hamiltonian in the following form:

$$\mathcal{H}_{S} = J \sum_{\ell=1}^{N/2} \left[\left\{ \lambda \left(\vec{S}_{2\ell-1} + \vec{S}_{2\ell} \right) + \vec{S}_{2\ell+1} / \lambda \right\}^{2} -2\lambda^{2} S(S+1) - S(S+1) / \lambda^{2} \right] + J' \sum_{\ell=1}^{N/2} \left[\left\{ \vec{S}_{2\ell} / \lambda' + \lambda' \left(\vec{S}_{2\ell+1} + \vec{S}_{2\ell+2} \right) \right\}^{2} -2\lambda'^{2} S(S+1) - S(S+1) / \lambda'^{2} \right]$$
(8)

Then, by using the relation,

$$(\vec{S}_{2\ell-1} + \vec{S}_{2\ell})[2\ell - 1, 2\ell] = 0,$$
 (9)

it is easy to see that Φ_{dimer} given by Eq. (2) is an eigenstate of \mathcal{H}_S with the energy eigenvalue

$$E_{\text{dimer}} = -NS(S+1)(J\lambda^2 + J'\lambda'^2) . \qquad (10)$$

The symbol $[2\ell-1, 2\ell]$ in Eq. (9) and in the expression of Φ_{dimer} stands for the normalized singlet combination of two spins $\vec{S}_{2\ell-1}$ and $\vec{S}_{2\ell}$ with magnitude S. In the special case where $J = J' = (1-\alpha)/2$ and $J\lambda^2 + J'\lambda'^2 = 1+\alpha$, the Hamiltonian \mathcal{H}_S is reduced to the Hamiltonian \mathcal{H}_S , given by Eq. (1), with j=1/2. It is noted that Shastry and Sutherland's variational calculation [14] leads to the result that in the above special case, Φ_{dimer} becomes the ground state of the system described by \mathcal{H}_S for $S \geq 1$ at least when $\alpha \geq \alpha_c^{\text{var}} = S/(2+S)$.

- F. D. M. Haldane: Phys. Lett. **93A** (1983) 464; F.
 D. M. Haldane: Phys. Rev. Lett. **50** (1983) 1153.
- R. R. P. Singh and M. P. Gelfand: Phys. Rev. Lett. 61 (1988) 2133.
- Y. Kato and A. Tanaka: J. Phys. Soc. Jpn. 63 (1994) 1277.
- 4) Y. Nishiyama, K. Totsuka, N. Hatano and M. Suzuki: Sci. Rep. RITU, this issue.
- 5) S. Yamamoto: preprint.
- 6) T. Tonegawa, M. Kaburagi, N. Ichikawa and I. Harada: J. Phys. Soc. Jpn. **61** (1992) 2890.
- 7) T. Tonegawa, S. Suzuki and M. Kaburagi: *Proc. Int. Conf. on Magnetism, Warsaw, 1994*, J. Magn. Magn. Mater., to be published.
- 8) H. Shimaoka and K. Kuboki: J. Phys. Soc. Jpn. **62** (1993) 3257.
- 9) S. R. White: Phys. Rev. Lett. 69 (1992) 2863.
- 10) K. Binder: Phys. Rev. Lett. 47 (1981) 693; K. Binder: Z. Phys. B 43 (1981) 119.
- 11) M. den Nijs and K. Rommelse: Phys. Rev. B 40 (1989) 4709.
- 12) It should be noted that, as has been discussed in M. Kaburagi, I. Harada and T. Tonegawa: J. Phys. Soc. Jpn. 62 (1993) 1848, when the ground state is the Haldane state, the singlet-quintuplet energy gap under open boundary conditions is equivalent to the singlet-triplet energy gap under periodic boundary conditions.
- 13) I. Affleck: Phys. Rev. Lett. 54 (1985) 966; I. Affleck: Nucl. Phys. B 257 (1985) 397; I. Affleck: Nucl. Phys. B 265 (1986) 409; I. Affleck and F. D. M. Haldane: Phys. Rev. B 36 (1987) 5291.
- 14) B. S. Shastry and B. Sutherland: Phys. Rev. Lett. 47 (1981) 964.
- 15) T. Tonegawa and M. Kaburagi: unpublished; see also reference 7).
- 16) M. Kaburagi, T. Tonegawa and T. Nishino, Computational Approaches in Condensed Matter Physics, Springer Proc. Phys., eds. S. Miyashita, M. Imada and H. Takayama (Springer, Berlin, 1992) p. 179.