16 research outputs found

    Mechanism of action of VP1-001 in cryAB(R120G)-associated and age-related cataracts

    Get PDF
    PurposeWe previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind and stabilize αB-crystallin (cryAB) in vitro and to produce a similar therapeutic effect in cryAB(R120G) mutant and aged wild-type mice with cataracts. VP1-001 and ent-VP1-001 have identical physicochemical properties. These experiments are designed to critically evaluate whether stereoselective binding to cryAB is required for activity.MethodsWe compared the binding of VP1-001 and ent-VP1-001 to cryAB using in silico docking, differential scanning fluorimetry (DSF), and microscale thermophoresis (MST). Compounds were delivered by six topical administrations to mouse eyes over 2 weeks, and the effects on cataracts and lens refractive measures in vivo were examined. Additionally, lens epithelial and fiber cell morphologies were assessed via transmission electron microscopy.ResultsDocking studies suggested greater binding of VP1-001 into a deep groove in the cryAB dimer compared with ent-VP1-001. Consistent with this prediction, DSF and MST experiments showed that VP1-001 bound cryAB, whereas ent-VP1-001 did not. Accordingly, topical treatment of lenses with ent-VP1-001 had no effect, whereas VP1-001 produced a statistically significant improvement in lens clarity and favorable changes in lens morphology.ConclusionsThe ability of VP1-001 to bind native cryAB dimers is important for its ability to reverse lens opacity in mouse models of cataracts

    The other lives of ribosomal proteins

    No full text
    <p>Abstract</p> <p>Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects.</p

    Genomic Heat Shock Element Sequences Drive Cooperative Human Heat Shock Factor 1 DNA Binding and Selectivity*

    No full text
    The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer

    Analysis of amyloid-like secondary structure in the Cryab-R120G knock-in mouse model of hereditary cataracts by two-dimensional infrared spectroscopy

    Get PDF
    αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer\u27s, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract

    BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins

    No full text
    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps

    Chemical validation of a druggable site on Hsp27/HSPB1 using in silico solvent mapping and biophysical methods

    No full text
    Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16&nbsp;µM), while maintaining good ligand efficiency (~0.32&nbsp;kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes
    corecore