173 research outputs found

    Molecular characterization and validation of commercially available methods for haptoglobin measurement in bottlenose dolphin

    Get PDF
    AbstractHaptoglobin (Hp) is a positive acute-phase protein and a valuable marker of inflammation in both human and veterinary medicine. The aim of this study was to validate the molecular characterization of Hp in dolphins and to validate commercially available Hp measurement methods such as Hp-ELISA (originally designed for pigs) and Hp–hemoglobin (Hb) binding assay. The dolphin Hp (dHp) amino acid sequence appeared most similar to pig Hp by sequence homology and phylogenetic clustering. Amino acid sequence analysis revealed that dHp comprises the Hp1 form of α1 and β chains. The anti-pig Hp antibody cross-reacted with both recombinant dHp, expressed by Escherichia coli, and dHp from serum. The intra- and inter-assay levels of imprecision of pig Hp-ELISA and the Hp–Hb binding assay were found to be tolerable for the determination of Hp in dolphin, and there was no significant discrepancy between the two determination methods. The ability of the assay to differentiate between healthy and inflammation groups was investigated, and a significant increase in Hp concentration was detected in inflammatory conditions. Thus, Hp is a useful inflammation marker for dolphin, and the Hp concentration in dolphin serum samples can be reliably measured using commercially available pig Hp-ELISA and Hp–Hb binding assay

    Continuing surgical education of non-technical skills

    Get PDF
    Background The non-technical skills for surgeons (NOTSS) system was developed as a tool to assess surgical skills for patient safety during surgery. This study aimed to develop a NOTSS-based training system for surgical trainees to acquire non-technical skills using a chest surgery scenario in a wet lab. Materials and methods Trainees were categorized into three subgroups according to the years of experience as follows: Level A: 6 years or more; Level B: 3–5 years; and Level C: 1–2 years. Three stages of surgical procedure were designed: 1. chest wall resection and right upper lobe lobectomy, 2. right middle lobe sleeve lobectomy, and 3. right lower lobe lobectomy. One instructor was assigned to each operation table, who evaluated each participant's NOTSS scores consisting of 16 elements. Results When comparing average NOTSS score of all the three procedures, significant differences were observed between Level A, B, and C trainees. As an example of varying elements by procedure, Level A trainees demonstrated differences in Situation Awareness, and a significant difference was observed in Level C trainees regarding the elements of Decision Making. On the contrary, no significant difference was observed among Level B trainees. In the comparison between first-time and experienced participants, a significant improvement was observed in some elements in Level B and C trainees. Conclusion This study highlights the usefulness and feasibility of the NOTSS scoring system for surgeons with different experiences and the effectiveness of providing feedback to trainees during intraoperative handoffs in a wet lab

    Structure of a tetrameric photosystem I from a glaucophyte alga Cyanophora paradoxa

    Get PDF
    Photosystem I (PSI) is one of the two photosystems functioning in light-energy harvesting, transfer, and electron transfer in photosynthesis. However, the oligomerization state of PSI is variable among photosynthetic organisms. We present a 3.8-angstrom resolution cryo-electron microscopic structure of tetrameric PSI isolated from the glaucophyte alga Cyanophora paradoxa, which reveals differences with PSI from other organisms in subunit composition and organization. The PSI tetramer is organized in a dimer of dimers with a C2 symmetry. Unlike cyanobacterial PSI tetramers, two of the four monomers are rotated around 90 degrees, resulting in a completely different pattern of monomer-monomer interactions. Excitation-energy transfer among chlorophylls differs significantly between Cyanophora and cyanobacterial PSI tetramers. These structural and spectroscopic features reveal characteristic interactions and excitation-energy transfer in the Cyanophora PSI tetramer, suggesting that the Cyanophora PSI could represent a turning point in the evolution of PSI from prokaryotes to eukaryotes

    Metastatic Patterns of Myxoid/Round Cell Liposarcoma: A Review of a 25-Year Experience

    Get PDF
    Myxoid/round cell liposarcoma (MRCL), unlike other soft tissue sarcomas, has been associated with unusual pattern of metastasis to extrapulmonary sites. In an attempt to elucidate the clinical features of MRCL with metastatic lesions, 58 cases, from the medical database of Keio University Hospital were used for the evaluation. 47 patients (81%) had no metastases, whereas 11 patients (11%) had metastases during their clinical course. Among the 11 patients with metastatic lesions, 8 patients (73%) had extrapulmonary metastases and 3 patients (27%) had pulmonary metastases. Patients were further divided into three groups; without metastasis, with extrapulmonary metastasis, and with pulmonary metastasis. When the metastatic patterns were stratified according to tumor size, there was statistical significance between the three groups (P = 0.028). The 8 cases with extrapulmonary metastases were all larger than 10 cm. Similarly, histological grading had a significant impact on metastatic patterns (P = 0.027). 3 cases with pulmonary metastatic lesions were all diagnosed as high grade. In conclusion, large size and low histological grade were significantly associated with extrapulmonary metastasis

    Zinc is a novel intracellular second messenger

    Get PDF
    Zinc is an essential trace element required for enzymatic activity and for maintaining the conformation of many transcription factors; thus, zinc homeostasis is tightly regulated. Although zinc affects several signaling molecules and may act as a neurotransmitter, it remains unknown whether zinc acts as an intracellular second messenger capable of transducing extracellular stimuli into intracellular signaling events. In this study, we report that the cross-linking of the high affinity immunoglobin E receptor (Fcɛ receptor I [FcɛRI]) induced a release of free zinc from the perinuclear area, including the endoplasmic reticulum in mast cells, a phenomenon we call the zinc wave. The zinc wave was dependent on calcium influx and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase activation. The results suggest that the zinc wave is involved in intracellular signaling events, at least in part by modulating the duration and strength of FcɛRI-mediated signaling. Collectively, our findings indicate that zinc is a novel intracellular second messenger

    Structure of a cyanobacterial photosystem I surrounded by octadecameric IsiA antenna proteins

    Get PDF
    Iron-stress induced protein A (IsiA) is a chlorophyll-binding membrane-spanning protein in photosynthetic prokaryote cyanobacteria, and is associated with photosystem I (PSI) trimer cores, but its structural and functional significance in light harvesting remains unclear. Here we report a 2.7-angstrom resolution cryo-electron microscopic structure of a supercomplex between PSI core trimer and IsiA from a thermophilic cyanobacterium Thermosynechococcus vulcanus. The structure showed that 18 IsiA subunits form a closed ring surrounding a PSI trimer core. Detailed arrangement of pigments within the supercomplex, as well as molecular interactions between PSI and IsiA and among IsiAs, were resolved. Time-resolved fluorescence spectra of the PSI-IsiA supercomplex showed clear excitation-energy transfer from IsiA to PSI, strongly indicating that IsiA functions as an energy donor, but not an energy quencher, in the supercomplex. These structural and spectroscopic findings provide important insights into the excitation-energy-transfer and subunit assembly mechanisms in the PSI-IsiA supercomplex. Akita et al. present the latest approach to solve IsiA-PSI supercomplex molecular structure with increased resolution using cryo-EM and time-resolved fluorescence studies. With 2.7 angstrom resolution, they reveal molecular interactions between PSI and IsiA subunits and that IsiA functions as an energy donor in the supercomplex

    Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus

    Get PDF
    Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-& ANGS; resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs

    Structural basis for different types of hetero-tetrameric light-harvesting complexes in a diatom PSII-FCPII supercomplex

    Get PDF
    Fucoxanthin chlorophyll (Chl) a/c-binding proteins (FCPs) function as light harvesters in diatoms. The structure of a diatom photosystem II-FCPII (PSII-FCPII) supercomplex have been solved by cryo-electron microscopy (cryo-EM) previously; however, the FCPII subunits that constitute the FCPII tetramers and monomers are not identified individually due to their low resolutions. Here, we report a 2.5 angstrom resolution structure of the PSII-FCPII supercomplex using cryo-EM. Two types of tetrameric FCPs, S-tetramer, and M-tetramer, are identified as different types of hetero-tetrameric complexes. In addition, three FCP monomers, m1, m2, and m3, are assigned to different gene products of FCP. The present structure also identifies the positions of most Chls c and diadinoxanthins, which form a complicated pigment network. Excitation-energy transfer from FCPII to PSII is revealed by time-resolved fluorescence spectroscopy. These structural and spectroscopic findings provide insights into an assembly model of FCPII and its excitation-energy transfer and quenching processes. Fucoxanthin chlorophyll a/c-binding proteins (FCPs) harvest light energy in diatoms. The authors analyzed a structure of PSII-FCPII supercomplex at high resolution by cryo-EM, which identified each FCP subunit and pigment network in the supercomplex
    corecore