25 research outputs found

    Catching up and falling behind in technological progress : the experience of the textile and chemical industries in Italy between 1904 and 1937

    Full text link

    Indices calculated by serum creatinine and cystatin C as predictors of liver damage, muscle strength and sarcopenia in liver disease

    Get PDF
    Serum creatinine (Cr)-based glomerular filtration rate (CrGFR) is overestimated in liver disease. The present study evaluated whether the difference in CrGFR and cystatin C (CysC) GFR (dGFR) is significant in liver disease. The Cr-to-CysC ratio and sarcopenia index (SI) have been reported to correlate with muscle volume. An estimated total body muscle mass with Cr, CysC and calculated body muscle mass (CBMM) has also been reported to correlate with muscle mass. The applicability of dGFR, SI and CBMM for liver disease were evaluated. A total of 313 patients with liver damage were evaluated for Child-Pugh score, albumin-bilirubin (ALBI) score, model for end-stage liver disease, fibrosis-4, Cr, CysC, Cr-based estimated GFR (CreGFR), CysCGFR and grip strength. Of the 313 patients, 199 were evaluated using cross-sectional computed tomography (CT) of the third lumbar vertebra to determine the skeletal muscle (SM) mass. dGFR, CBMM and SI were compared to liver damage, muscle strength and muscle mass. In the 313 patients, dGFR was correlated with age, ALBI and grip strength; CBMM was correlated with body mass index (BMI) and grip strength; and SI was correlated with BMI and grip strength. In patients evaluated with CT, the correlation coefficients for CBMM and SI with SM were 0.804 and 0.293, respectively. Thus, CBMM and SI were associated with sarcopenia. The relationship between dGFR and ALBI does not differ with different grades of CrGFR-based chronic kidney disease (CKD). dGFR is a marker of liver damage and muscle strength regardless of CKD. CBMM and SI are markers for sarcopenia in liver disease

    Rapid detection of papillary thyroid carcinoma by fluorescence imaging using a γ-glutamyltranspeptidase-specific probe: a pilot study

    No full text
    Abstract Background Nodular lesions of the thyroid gland, including papillary thyroid carcinoma (PTC), may be difficult to diagnose by imaging, such as in ultrasonic echo testing, or by needle biopsy. Definitive diagnosis is made by pathological examination but takes several days. A more rapid and simple method to clarify whether thyroid nodular lesions are benign or malignant is needed. Fluorescence imaging with γ-glutamyl hydroxymethyl rhodamine green (gGlu-HMRG) uses γ-glutamyltranspeptidase (GGT), a cell-surface enzyme, to hydrolyze the γ-glutamyl peptide and transfer the γ-glutamyl group. GGT is overexpressed in several cancers, such as breast, lung, and liver cancers. This imaging method is rapid and useful for detecting such cancers. In this study, we tried to develop a rapid fluorescence detection method for clinical samples of thyroid cancer, especially papillary carcinoma. Methods Fluorescence imaging with gGlu-HMRG was performed to detect PTC using 23 surgically resected clinical samples. A portable imaging device conveniently captured white-light images and fluorescence images with blue excitation light. Hematoxylin-eosin (HE) staining was used to evaluate which fluorescent regions coincided with cancer, and immunohistochemical examination was used to detect GGT expression. Results All 16 PTC samples exhibited fluorescence after topical application of gGlu-HMRG, whereas the normal sections of each sample showed no fluorescence. HE staining revealed that each fluorescent region corresponded to a region with carcinoma. The PTC samples also exhibited GGT expression, as confirmed by immunohistochemistry. Conclusions All PTC samples were detected by fluorescence imaging with gGlu-HMRG. Thus, fluorescence imaging with gGlu-HMRG is a rapid, simple, and powerful detection tool for PTC
    corecore