41 research outputs found

    Neuropathology does not Correlate with Regional Differences in the Extent of Expansion of CTG Repeats in the Brain with Myotonic Dystrophy Type 1

    Get PDF
    Myotonic dystrophy (DM1) is known to be an adult-onset muscular dystrophy caused by the expansion of CTG repeats within the 3' untranslated region of the dystrophin myotonin protein kinase (DMPK) gene. The clinical features of DM1 include CNS symptoms, such as cognitive impairment and personality changes, the pathogenesis of which remains to be elucidated. We hypothesized that the distribution of neuropathological changes might be correlated with the extent of the length of the CTG repeats in the DMPK genes in DM1 patients. We studied the neuropathological changes in the brains of subjects with DM1 and investigated the extent of somatic instability in terms of CTG repeat expansion in the different brain regions of the same individuals by Southern blot analysis. The neuropathological changes included état criblé in the cerebral deep white matter and neurofibrillary tangles immunoreactive for phosphorylated tau in the hippocampus and entorhinal cortex, both of which were compatible with the subcortical dementia in DM1 patients. However, the length of the CTG repeats did not correlate with the regional differences in the extent of neuropathological changes. Our data suggested that pathomechanisms of dementia in DM1 might be more multifactorial rather than a toxic gain-of-function due to mutant RNA

    Leukemia-related transcription factor TEL/ETV6 expands erythroid precursors and stimulates hemoglobin synthesis.

    No full text
    TEL/ETV6 located at chromosome 12p13 encodes a member of the E26 transformation-specific family of transcription factors. TEL is known to be rearranged in a variety of leukemias and solid tumors resulting in the formation of oncogenic chimeric protein. Tel is essential for maintaining hematopoietic stem cells in the bone marrow. To understand the role of TEL in erythropoiesis, we generated transgenic mice expressing human TEL under the control of Gata1 promoter that is activated during the course of the erythroid-lineage differentiation (GATA1-TEL transgenic mice). Although GATA1-TEL transgenic mice appeared healthy up to 18 months of age, the level of hemoglobin was higher in transgenic mice compared to non-transgenic littermates. In addition, CD71+/TER119+ and c-kit+/CD41+ populations proliferated with a higher frequency in transgenic mice when bone marrow cells were cultured in the presence of erythropoietin and thrombopoietin, respectively. In transgenic mice, enhanced expression of Alas-e and beta-major globin genes was observed in erythroid-committed cells. When embryonic stem cells expressing human TEL under the same Gata1 promoter were differentiated into hematopoietic cells, immature erythroid precursor increased better compared to controls as judged from the numbers of burst-forming unit of erythrocytes. Our findings suggest some roles of TEL in expanding erythroid precursors and accumulating hemoglobin
    corecore